CMR: \(x=\frac{\left(n+1\right)\left(n+2\right)\left(n+3\right)...\left(2n-1\right)\cdot2n}{2^n}\) là một số nguyên
Với số tự nhiên n, \(n\ge3\). Đặt \(S_n=\dfrac{1}{3\left(1+\sqrt{2}\right)}+\dfrac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+...+\dfrac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}\). Chứng minh: \(S_n< \dfrac{1}{2}\)
Cho \(f\left(n\right)=\left(n^2+n+1\right)^2+1\). Tính: \(\frac{f\left(1\right).f\left(3\right).f\left(5\right)...f\left(2017\right)}{f\left(2\right).f\left(4\right).f\left(6\right)...f\left(2018\right)}\)
Tính các tích sau:
P\(_1\) =\(\left(1+\dfrac{2}{4}\right)\left(1+\dfrac{2}{10}\right)\left(1+\dfrac{2}{18}\right)....\left(1+\dfrac{2}{n^2+3n}\right)\)
P\(_2\) =\(\left(1+\dfrac{1}{3}\right)\left(1+\dfrac{1}{8}\right)\left(1+\dfrac{1}{15}\right)....\left(1+\dfrac{2}{n^2+2n}\right)\)
P\(_3\) = \(\left(1-\dfrac{1}{1+2}\right)\left(1-\dfrac{1}{1+2+3}\right)\left(1-\dfrac{1}{1+2+3+4}\right).....\left(1-\dfrac{1}{1+2+3+4+...+n}\right)\)
P\(_4\) = \(\dfrac{2^4+4}{4^4+4}.\dfrac{6^4+4}{8^4+4}.\dfrac{8^4+4}{10^4+4}....\dfrac{18^4+4}{20^4+4}\)
cmr:
\(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}....\dfrac{2n-1}{2n}\le\dfrac{1}{\sqrt{3n+1}}\left(\forall n\ge1\right)\)
Cho \(a_1,a_2,a_3,...,a_{2n}\left(n\ge2\right)\) là các số thực thỏa mãn : \(\sum\limits^{2n-1}_{i=1}\left(a_i-a_{i+1}\right)^2=1\)
Tìm GTLN của biểu thức sau : \(\left(a_{n+1}+a_{n+2}+...+a_{2n}\right)-\left(a_1+a_2+...+a_n\right)\)
Cho biểu thức \(S_n=\left(\sqrt{5}+\sqrt{3}\right)^n+\left(\sqrt{5}-\sqrt{3}\right)^n\) với n nguyên dương
Chứng minh \(S_{2n}=S_n^2-2^{n+1}\) áp dụng tính \(S_4;S_8\)
Viết dưới dạng lũy thừa của 1 số nguyên
a)\(12^3:\left(3^{-4}.64\right)\) b) \(\left(\dfrac{3}{7}\right)^5.\left(\dfrac{7}{3}\right)^{-1}.\left(\dfrac{5}{3}\right)^6:\left(\dfrac{343}{625}\right)^{-2}\)c) \(5^4.125.\left(2,5\right)^{-5}.0,04\)
a,Rút gọn :
\(A=\dfrac{\left(1+\dfrac{1}{4}\right)\left(3^4+\dfrac{1}{4}\right)\left(5^4+\dfrac{1}{4}\right)...\left(51^4+\dfrac{1}{4}\right)}{\left(2^4+\dfrac{1}{4}\right)\left(4^4+\dfrac{1}{4}\right)\left(6^4+\dfrac{1}{4}\right)...\left(52^4+\dfrac{1}{4}\right)}\)
b, Tìm nghiệm nguyên: \(4x^2-8y^3+2z^2+4x-4=0\)