Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Mạnh Hùng

a,Rút gọn :

\(A=\dfrac{\left(1+\dfrac{1}{4}\right)\left(3^4+\dfrac{1}{4}\right)\left(5^4+\dfrac{1}{4}\right)...\left(51^4+\dfrac{1}{4}\right)}{\left(2^4+\dfrac{1}{4}\right)\left(4^4+\dfrac{1}{4}\right)\left(6^4+\dfrac{1}{4}\right)...\left(52^4+\dfrac{1}{4}\right)}\)

b, Tìm nghiệm nguyên: \(4x^2-8y^3+2z^2+4x-4=0\)

Nguyễn Thanh Hằng
1 tháng 1 2019 lúc 11:09

\(A=\dfrac{\left(1+\dfrac{1}{4}\right)\left(3^4+\dfrac{1}{4}\right)........\left(51^4+\dfrac{1}{4}\right)}{\left(2^4+\dfrac{1}{4}\right)\left(4^4+\dfrac{1}{4}\right).......\left(52^4+\dfrac{1}{4}\right)}\)

\(=\dfrac{\left(1+1+\dfrac{1}{2}\right)\left(1-1+\dfrac{1}{2}\right)........\left(11^2-11+\dfrac{1}{2}\right)}{\left(2^2+2+\dfrac{1}{2}\right)\left(2^2-2+\dfrac{1}{2}\right)........\left(12^2-12+\dfrac{1}{2}\right)}\)

\(=\dfrac{\dfrac{1}{2}\left(1.2+\dfrac{1}{2}\right)\left(2.3+\dfrac{1}{2}\right)........\left(11.12+\dfrac{1}{2}\right)}{\left(2.3+\dfrac{1}{2}\right)\left(3.4+\dfrac{1}{2}\right)......\left(12.13+\dfrac{1}{2}\right)}\)

\(=\dfrac{\dfrac{1}{2}}{12.13+\dfrac{1}{2}}\)

\(=\dfrac{1}{313}\)


Các câu hỏi tương tự
Nguyễn Thu Trà
Xem chi tiết
Cô Pê
Xem chi tiết
Nguyễn Thu Trà
Xem chi tiết
Phạm Ngọc Trâm Anh
Xem chi tiết
T.Huyền
Xem chi tiết
Học tốt
Xem chi tiết
Nguyễn Thị Cẩm Nhi
Xem chi tiết
Nguyễn Thu Trà
Xem chi tiết
ghdoes
Xem chi tiết