Với số tự nhiên n, \(n\ge3\). Đặt \(S_n=\dfrac{1}{3\left(1+\sqrt{2}\right)}+\dfrac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+...+\dfrac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}\). Chứng minh: \(S_n< \dfrac{1}{2}\)
Với mọi số nguyên dương n,chứng minh rằng\(S_n=\left(3+\sqrt{5}\right)^n+\left(3-\sqrt{5}\right)^n\)
cho \(S_n=\frac{\sqrt{3}+S_{n-1}}{1-\sqrt{3}S_{n-1}}\) với n ϵ N và n ≥ 2, biết \(S_n=1\)
Tính \(S=S_1+S_2+S_3+...+S_{2005}\)
Chứng minh rằng với mọi số nguyên dương n ta đều có \(\dfrac{1}{2\sqrt{1}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{4\sqrt{3}}+\dfrac{1}{5\sqrt{4}}+...+\dfrac{1}{\left(n+1\right)\sqrt{n}}< 2\)
Cho \(S_n=\dfrac{\sqrt{3}+S_{n-1}}{1-\sqrt{3}.S_{n-1}}\) với n là số tự nhiên không nhỏ hơn 2. Biết S1 =1. Tính S=S1 +S2 +..+S2017
Cho \(S_n=\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{\left(4n-1\right)\left(4n+1\right)}n\in N^{ }\)*
a) Tính \(S_1,S_2,S_3,S_4\)
b) Hãy dự toán công thức Tính \(S_n\)và chứng minh bằng quy nạp
Chứng minh rằng với mọi số n nguyên dương, ta có:
\(S=\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{\left(n+1\right)n}< \frac{5}{2}\)
1) Chứng minh rằng: \(1+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{3\sqrt{3}}+...+\dfrac{1}{n\sqrt{n}}< 2\sqrt{2}\left(n\in N\right)\)
2) Chứng minh rằng: \(\dfrac{2}{3}+\sqrt{n+1}< 1+\sqrt{2}+\sqrt{3}+...+\sqrt{n}< \dfrac{2}{3}\left(n+1\right)\sqrt{n}\)
3) \(2\sqrt{n}-3< \dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}< 2\sqrt{n}-2\)
4) \(\dfrac{\sqrt{2}-\sqrt{1}}{2+1}+\dfrac{\sqrt{3}-\sqrt{2}}{3+2}+...+\dfrac{\sqrt{n+1}-\sqrt{n}}{n+1+n}< \dfrac{1}{2}\left(1-\dfrac{1}{\sqrt{n+1}}\right)\)
1, cho \(M=\dfrac{1}{2-\sqrt{3}}\) và \(N=\sqrt{6}.\sqrt{2}\) kết quả của phét tính 2M - N bằng
a, \(4+4\sqrt{3}\) b, \(2+\sqrt{3}\) c,4 d, \(2\sqrt{3}\)
2, với x>6 thì biểu thức \(-x+\sqrt{\left(6-x\right)^2}\) rút gọn đc kết quả bằng
a, -2x+6 b,2x-6 c -6 d, 6
3, cho hàm số y=f(x)=\(\dfrac{1}{3}\) x -1 khẳng định nào sao đây đúng
a, f(2)<f(3) b, f(-3)< f(-4) c, f (-4)>f(2) d, f(2)<(0)
4,cho tam giác ABC đều cạch a nội tiếp đg tròn (O;R) giá trị của R bằng
a, \(R=\dfrac{a\sqrt{3}}{3}\) b, R=a c, \(R=a\sqrt{3}\) d, \(R=\dfrac{a\sqrt{3}}{2}\)