CM CÁC BẤT ĐẲNG THỨC SAU
A) \(2\left(A^2+B^2\right)\ge\left(A+B\right)^2\ge2\left(AB+BA\right)\)
B) \(3\left(A^2+B^2+C^2\right)\ge\left(A+B+C\right)^2\ge3\left(AB+BC+CA\right)\)
CM CÁC BẤT ĐẲNG THỨC SAU
A) \(AB\le\left(\dfrac{A+B}{2}\right)^2\)
B) \(ABC\le\left(\dfrac{A+B+C}{3}\right)^3\)
C) \(ABCD\le\left(\dfrac{A+B+C+D}{4}\right)^4\)
CM CÁC BẤT ĐẲNG THỨC SAU
A) \(X+\dfrac{1}{X}\ge2\) (X>0)
B) \(\dfrac{A}{B}+\dfrac{B}{A}\ge2\) (AB>0)
Cho \(a\ge1\), \(b\ge4\), \(c\ge9\). Tìm max \(K=\dfrac{bc\sqrt{a-1}+ca\sqrt{b-4}+ab\sqrt{c-9}}{abc}\)
cho a,b,c > 0 thỏa mãn a + b + c = 6. Chứng minh:
\(\dfrac{a}{\sqrt{b^3+1}}+\dfrac{b}{\sqrt{c^3+1}}+\dfrac{c}{\sqrt{a^3+1}}\ge2\)
bài 2 chứng minh bất đẳng thức
c) a+b+\(\dfrac{1}{2}\) >_ \(\sqrt{a}+\sqrt{b}\)
e)\(\sqrt{\dfrac{a+b}{2}}\)>_\(\dfrac{\sqrt{a}+\sqrt{b}}{2}\)
CM CÁC BẤT ĐẲNG THỨC SAU
A) \(A^2+B^2\ge AB+AB\)
B) \(A^3+B^3\ge A^2B+AB^2\)
C) \(A^4+B^4\ge A^3B+AB^3\)
Chứng minh bất đẳng thức Cô-si
Bất đẳng thức Cô-si cho hai số là:
\(\dfrac{a+b}{2}\) ≥\(\sqrt{ab}\) , a≥0 , b≥0
Giúp với mai mink thi rồi
Thu gọn:
a) \(\sqrt{7-4\sqrt{3}}-\sqrt{7+4\sqrt{3}}\)
b) \(\left(\frac{\sqrt{x}+1}{x-4}-\frac{\sqrt{x}-1}{x+4\sqrt{x}+4}\right)\cdot\frac{x\sqrt{x}+2x-4\sqrt{x}-8}{\sqrt{x}}\)