Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
CM CÁC BẤT ĐẲNG THỨC SAU
A) \(\left(AX+BY\right)^2\le\left(A^2+B^2\right)\left(X^2+Y^2\right)\)
B) \(\left(AX+BY+CZ\right)^2\le\left(A^2+B^2+C^2\right)\left(X^2+Y^2+Z^2\right)\)
CM CÁC BẤT ĐẲNG THỨC SAU
A) \(\left|A\right|\ge A\)
B) \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)
C) \(\left|A\right|-\left|B\right|\le\left|\left|A\right|-\left|B\right|\right|\le\left|A-B\right|\)
chứng minh rằng:
\(-\dfrac{1}{2}\le\dfrac{\left(a+b\right)\left(1-ab\right)}{\left(a^2+1\right)\left(b^2+1\right)}\le\dfrac{1}{2}\)
Bài 9: Giải các bất PT sau và biểu diễn tập ngiệm trên trục số:
a. \(\left(x-3\right)^2< x^2-5x+4\)
b. \(\left(x-3\right)\left(x+3\right)\le\left(x+2\right)^2+3\)
c. \(\dfrac{4x-5}{3}>\dfrac{7-x}{5}\)
d. \(\dfrac{x+2}{x-3}< 0\)
CM CÁC BẤT ĐẲNG THỨC SAU
A) \(\left(A+B\right)\left(\dfrac{1}{A}+\dfrac{1}{B}\right)\ge4\)
B) \(\left(A+B+C\right)\left(\dfrac{1}{A}+\dfrac{1}{B}+\dfrac{1}{C}\right)\ge9\)
C) \(\dfrac{1}{A}+\dfrac{1}{B}+\dfrac{1}{C}\ge\dfrac{9}{A+B+C}\)
Giải các bất phương trình sau :
a) \(4x-8\ge3\left(3x-1\right)-2x+1\)
b) \(\left(x-3\right)\left(x+2\right)+\left(x+4\right)^2\le2x\left(x+5\right)+4\)
c) \(3x-\dfrac{x+2}{3}\le\dfrac{3\left(x-2\right)}{2}+5-x\)
d) \(x-\dfrac{x+2}{3}\ge3x-1+\dfrac{x}{2}\)
e) \(\dfrac{x\left(x+2\right)}{3}+\dfrac{\left(x-1\right)\left(x+2\right)}{2}\ge\dfrac{5\left(x+1\right)^2}{6}+1\)
f) \(\dfrac{x+5}{2012}+\dfrac{x+6}{2011}+\dfrac{x+7}{2010}>-3\)
Cho a,b,c dương. Chứng minh :
\(\dfrac{a^2+b^2}{a+b}+\dfrac{b^2+c^2}{b+c}+\dfrac{c^2+a^2}{c+a}\le\dfrac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)
giả sử a,b,c là các số thực dương thỏa mãn a \(\le\) b \(\le\)3\(\le\)c; c\(\ge\)b +1; a+b \(\ge\) c. Tìm giá trị nhỏ nhất của biểu thức \(Q=\dfrac{2ab+a+b+c\left(ab-1\right)}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)
Tìm số tự nhiên n nhỏ nhấtđể có bất đẳng thức \(\left(a^2+b^2+c^2\right)^2\le n\left(a^4+b^4+c^4\right)\)