CM CÁC BẤT ĐẲNG THỨC SAU
A) \(2\left(A^2+B^2\right)\ge\left(A+B\right)^2\ge2\left(AB+BA\right)\)
B) \(3\left(A^2+B^2+C^2\right)\ge\left(A+B+C\right)^2\ge3\left(AB+BC+CA\right)\)
CM CÁC BẤT ĐẲNG THỨC SAU
A) \(\left(AX+BY\right)^2\le\left(A^2+B^2\right)\left(X^2+Y^2\right)\)
B) \(\left(AX+BY+CZ\right)^2\le\left(A^2+B^2+C^2\right)\left(X^2+Y^2+Z^2\right)\)
CM CÁC BẤT ĐẲNG THỨC SAU
A) \(\left(A+B\right)\left(\dfrac{1}{A}+\dfrac{1}{B}\right)\ge4\)
B) \(\left(A+B+C\right)\left(\dfrac{1}{A}+\dfrac{1}{B}+\dfrac{1}{C}\right)\ge9\)
C) \(\dfrac{1}{A}+\dfrac{1}{B}+\dfrac{1}{C}\ge\dfrac{9}{A+B+C}\)
CM CÁC BẤT ĐẲNG THỨC SAU
A) \(AB\le\left(\dfrac{A+B}{2}\right)^2\)
B) \(ABC\le\left(\dfrac{A+B+C}{3}\right)^3\)
C) \(ABCD\le\left(\dfrac{A+B+C+D}{4}\right)^4\)
CM : \(\left(a^{10}+b^{10}\right)\left(a^2+b^2\right)\ge\left(a^8+b^8\right)\left(a^4+b^4\right)\)
giả sử a,b,c là các số thực dương thỏa mãn a \(\le\) b \(\le\)3\(\le\)c; c\(\ge\)b +1; a+b \(\ge\) c. Tìm giá trị nhỏ nhất của biểu thức \(Q=\dfrac{2ab+a+b+c\left(ab-1\right)}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)
CMR: \(8\left(a^3+b^3+c^3\right)\ge\left(a+b\right)^3+\left(b+c\right)^3+\left(c+a\right)^3\) với a, b, c > 0
CMR: \(a\left(a+b\right)\left(a+c\right)\left(a+b+c\right)+b^2c^2\)≥ 0
Cho a, b, c > 0 . CMR:
\(\frac{1}{a+b+c}\ge\frac{a^3}{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}+\frac{b^3}{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}+\frac{c^3}{\left(2c^2+a^2\right)\left(2c^2+a^2\right)}\)