Gọi \(d=ƯCLN\left(21n+4;4n+3\right)\) (\(d\in N\)*)
\(\Rightarrow\left\{{}\begin{matrix}21n+4⋮d\\14n+3⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}42n+8⋮d\\42n+9⋮d\end{matrix}\right.\)
\(\Rightarrow1⋮d\)
Vì \(d\in N\)*;\(1⋮d\Rightarrow d=1\)
\(\RightarrowƯCLN\left(21n+4;14n+3\right)=1\rightarrowđpcm\)
Gọi d là ƯCLN (21n+4,14n+3)
Ta có: \(\left\{{}\begin{matrix}21n+4⋮d\\14n+3⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2\left(21n+4\right)⋮d\\3\left(14n+3\right)⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}42n+8⋮d\\42n+9⋮d\end{matrix}\right.\)
\(\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)
\(\Rightarrow1⋮d\)
Vì d \(\Rightarrow\) ƯCLN (21n+4,14n+3)
\(\Rightarrow\) d = 1
Vậy ƯCLN (21+4,14n+3) = 1 \(\forall\) n
Gọi d là UCLN(21n+4;14n+3)
\(\Leftrightarrow21n+4⋮d\Rightarrow2\left(21n+4\right)⋮d\Rightarrow42n+8⋮d\)
\(14n+3⋮d\Rightarrow3\left(14n+3\right)⋮d\Rightarrow42n+9⋮d\)
Vì:
\(42n+8;42n+9\)\(⋮d\)
Nên:
\(\left(42n+9\right)-\left(42n+8\right)⋮d\)
\(42n+9-42n-8⋮d\)
\(1⋮d\)
\(\Rightarrow\dfrac{21n+4}{14n+3}\)tối giản với mọi n