Ta xét 2 trường hợp : n chẵn và lẻ :
Nếu : \(n=2k\left(k\in N\right)\) , ta có :
\(n+4=2k+4\left(k\in N\right)=2k+2.2=2\left(k+2\right)⋮2\) (1)
Nếu :\(n=2k+1\) , ta có :
\(n+5=2k+1+5\left(k\in N\right)=2k+6=2k+2.3=2\left(k+3\right)⋮2\) (2)
Từ (1) và (2) \(\Rightarrow\left(n+4\right).\left(n+5\right)⋮2\)
Vậy : ( n + 4 ) . ( n + 5 ) chia hết cho 2 với mọi \(n\in N\)
chẳng phải n+4 và n+5 là 2 số tự nhiên liên tiếp với mọi số tự nhien n à, mà 2 số tự nhiên liên tiếp sẽ có 1 số chãn và 1 số lẻ, mà số chẵn luôn chia hết cho 2, nên => ĐPCM, đơn giản mà, xét các trường hợp làm j cho tốn hơi