Tập xác định \(D=R\backslash\left\{m\right\}\)
Ta có : \(y'=\frac{x^2-2mx+m^2-1}{\left(x-m\right)^2}\Rightarrow y'=0\Leftrightarrow x^2-2mx+m^2-1=0\left(1\right)\left(x\ne m\right)\)
Ta thấy phương trình (1) luôn có 2 nghiệm phân biệt khác m và y' đổi dấu qua 2 nghiệm đó. Vậy hàm số luôn có cực trị với mọi giá trị của m