Bài 2: Cực trị hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Ngọc Phương Linh

Tìm m để hàm số : \(y=\left(x-m\right)\left(x^2-3x-m-1\right)\) có cực đại và cực tiểu thoản mãn \(\left|x_{CD}-x_{CT}\right|\ge\frac{\sqrt{52}}{3}\)

Trần Quốc Thế
26 tháng 4 2016 lúc 10:58

Ta có: y'= x2 - 3x - m -1 + (2x - 3)( x - m) = 3x2 - (2m + 6)x + 2m-1

y'=0 ↔ 3x2 - (2m + 6)x + 2m-1 = 0        (1)

Để hàm số y= (x - m)( x2 - 3x - m - 1) có cực đại và cực tiểu thì phương trình y'=0 có 2 nghiệm phân biệt ↔ phương trình (1) có 2 nghiệm phân biệt ↔ Δ' > 0 ↔ (m+3)2 - 3(2m-1) >0  ↔ m2 + 12 > 0   ( mọi m)

→ Hầm số luôn có cả cực đại và cực tiểu.

Gọi x1 và x2 là 2 nghiệm của phương trình (1)

Khi đó, theo định lý Vi-ét, nghiệm của phương trình (1) là:  x1 + x2 = ( 2m+6)/3    ; x1x2= (2m -1)/3

Theo bài ra, ta có: | x - xCT\(\ge\frac{\sqrt{52}}{3}\)

↔| x1 - x2\(\ge\frac{\sqrt{52}}{3}\) ↔ 9x1 - x2|\(\ge\) 52   ↔  9( x1 + x2)2 - 36x1x2 \(\ge\) 52

↔ m\(\ge\) 1

→ \(m\ge1\) hoặc \(m\le-1\)

Lê Thế Luân
26 tháng 4 2016 lúc 10:29

Hàm số xác định trên R

Ta có \(y'=3x^2-2\left(m+3\right)x+2m-1\)

\(\Rightarrow y'=0\Leftrightarrow3x^2-2\left(m+3\right)x+2m-1=0\left(1\right)\)

Hàm số có 2 điểm cực trị thỏa mãn \(\left|x_{CD}-x_{CT}\right|\ge\frac{\sqrt{52}}{3}\Leftrightarrow\) phương trình (1) có 2 nghiệm \(x_1;x_2\) thỏa mãn \(\left|x_1-x_2\right|\ge\frac{\sqrt{52}}{3}\) \(\Leftrightarrow\begin{cases}\Delta'=m^2+7>0\\\left(x_1+x_2\right)^2-4x_1x_2\ge\frac{52}{9}\end{cases}\)

Theo định lý Viet ta có : \(\begin{cases}x_1+x_2=\frac{2\left(m+3\right)}{3}\\x_1x_2=\frac{2m-1}{3}\end{cases}\)

Suy ra \(\left(\frac{2\left(m+3\right)}{3}\right)^2-4\frac{2m-1}{3}\ge\frac{52}{9}\)

\(\Leftrightarrow4m^2-4\ge0\Leftrightarrow m\in\)(-\(\infty;-1\)\(\cup\) [\(1;+\infty\))

Vậy m\(\in\)(-\(\infty;-1\)\(\cup\) [\(1;+\infty\))


Các câu hỏi tương tự
Phan Thị Cẩm Tiên
Xem chi tiết
Bùi Quỳnh Hương
Xem chi tiết
Tâm Cao
Xem chi tiết
Trần Thụy Nhật Trúc
Xem chi tiết
Nguyễn Thanh Uyên
Xem chi tiết
Đoàn Thị Hồng Vân
Xem chi tiết
Nguyễn Đức Đạt
Xem chi tiết
Tâm Cao
Xem chi tiết
Lê Thành Công
Xem chi tiết