Đặt \(A=\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\)
\(A=\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{4}.\sqrt{12}}}}\)
\(A=\sqrt{6+2\sqrt{5-\sqrt{12+2\sqrt{12}+1}}}\)
\(A=\sqrt{6+2\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}}\)
\(A=\sqrt{6+2\sqrt{5-\sqrt{12}-1}}\)
\(A=\sqrt{6+2\sqrt{4-\sqrt{12}}}\)
\(A=\sqrt{6+2\sqrt{4-\sqrt{4}.\sqrt{3}}}\)
\(A=\sqrt{6+2\sqrt{3-2\sqrt{3}+1}}\)
\(A=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(A=\sqrt{6+2\left(\sqrt{3}-1\right)}\)
\(A=\sqrt{6+2\sqrt{3}-2}\)
\(A=\sqrt{4+2\sqrt{3}}\)
\(A=\sqrt{3+2\sqrt{3}+1}\)
\(A=\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(A=1+\sqrt{3}\) (đpcm)
Vậy \(A=1+\sqrt{3}\)