\(\forall n\in N\) ta luôn có \(\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\sqrt{n+1}-\sqrt{n}\) (*)
\(\Leftrightarrow\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)=1\)
\(\Leftrightarrow\left(n+1\right)-n=1\) (luôn đúng)
Vậy (*) được chứng minh.
Áp dụng với \(n=1;2;3;...;99\) ta có
\(S=\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)
\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{100}-\sqrt{99}\)
\(=\sqrt{100}-1=10-1=9\)
Vậy S là 1 số nguyên.
\(S=\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\\ S=\dfrac{1-\sqrt{2}}{1-2}+\dfrac{\sqrt{2}-\sqrt{3}}{2-3}+...+\dfrac{\sqrt{99}-\sqrt{100}}{99-100}\\ S=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\\ S=-1+\sqrt{100}=9\)