\(\Delta=m^2-4m+4=\left(m-2\right)^2\ge0\) \(\forall m\)
\(\Rightarrow\) Phương trình luôn luôn có nghiệm
Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=m-1\end{matrix}\right.\)
\(B=x_1^2+x_2^2+2x_1x_2-2x_1x_2-4\left(x_1+x_2\right)\)
\(=\left(x_1+x_2\right)^2-2x_1x_2-4\left(x_1+x_2\right)\)
\(=m^2-2\left(m-1\right)+4m\)
\(=m^2+2m+2\)
\(=\left(m+1\right)^2+1\ge1\)
\(\Rightarrow B_{min}=1\) khi \(m=-1\)