Gọi \(O\) là giao điểm của trục của hình thang cân \(ABCD\) và đường trung trực của cạnh bên \(AD\). Sử dụng tính chất: Điểm thuộc trung trực của một đoạn thẳng cách đều 2 đầu mút của đoạn thẳng đó chứng minh \(OA=OB=OC=OD\).
Gọi O=d∩d′O ta có:
\(d\) là trục của hình thang cân \(ABCD\)⇒ d là đường trung trực của AB và CD.
Mà \(O\) ∈ \(d\)⇒{\(OA=OB\)
\(OC=OD\) (1)
(điểm thuộc trung trực của một đoạn thẳng cách đều 2 đầu mút của đoạn thẳng đó).
Lại có \(O\) ∈ \(d'\)⇒\(OA=OD\) (2)
(điểm thuộc trung trực của một đoạn thẳng cách đều 2 đầu mút của đoạn thẳng đó).
Từ (1) và (2) ⇒ \(OA=OB=OC=OD\)
Vậy bốn điểm \(A,B,C,D\)cùng thuộc đường tròn tâm \(O\), bán kính \(R=OA=OB=OC=OD\).
Ta có: ABCD là hình thang cân
nên \(\widehat{A}=\widehat{B};\widehat{C}=\widehat{D}\)
hay \(\widehat{A}+\widehat{C}=180^0\)
Xét tứ giác ABCD có
\(\widehat{A}+\widehat{C}=180^0\)
Do đó: ABCD là tứ giác nội tiếp
hay A,B,C,D cùng thuộc 1 đường tròn