Bài 118. Cho ∆ABC nhọn. Các đường cao AD, BE và CF của tam giác
cắt nhau tại H.
a) Chứng minh bốn điểm A, E, H và F cùng thuộc một đường tròn.
Xác định tâm K của đường tròn đó.
b) Chứng minh bốn điểm B, E, F và C cùng thuộc một đường tròn có
tâm là I.
c) Chứng minh góc KEI = 90 độ.
d) Chứng minh KI vuông FE
a: Xét tứ giác AEHF có
\(\widehat{AEH}+\widehat{AFH}=180^0\)
Do đó: AEHF là tứ giác nội tiếp
b: Xét tứ giác BFEC có
\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)
Do đó: BFEC là tứ giác nội tiếp