Ta có:
\(B=\left(n-1\right)\left(3-2n\right)-n\left(n+5\right)\)
\(=\left[n\left(3-2n\right)-\left(3-2n\right)\right]-n\left(n+5\right)\)
\(=\left[3n-2n^2-3+2n\right]-\left(n^2+5n\right)\)
\(=3n-2n^2-3+2n-n^2-5n\)
\(=-3n^2-3\)
\(=-3\left(n^2+1\right)⋮3\)
Vậy \(B=\left(n-1\right)\left(3-2n\right)-n\left(n+5\right)\) chia hết cho 3 với mọi giá trị n (đpcm)