Bài 3: Những hằng đẳng thức đáng nhớ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Otokasa Yuu

chứng minh rằng a=b=c nếu có 1 trong các điều kiện sau:

a,a^2+b^2+c^2=ab+bc+ca

b,(a+b+c)^2=3(a^2+b^2+c^2)

c,(a+b+c)^2=3(ab+ac+bc)

Dũng Nguyễn
28 tháng 7 2018 lúc 9:03

a,Ta có: a^2 + b^2 + c^2 = ab + bc + ca
<=> 2.a^2 + 2.b^2 + 2.c^2 = 2.ab + 2.bc + 2.ca
<=> ( a^2 - 2ab + b^2 ) + ( b^2 - 2bc +c^2 ) + ( c^2 - 2ac + a^2 ) =0
<=> (a-b)^2 + (b-c)^2 + (c -a)^2 =0 (1)
Vì (a-b)^2≧0 ; (b-c)^2≧0 ; (c -a)^2 ≧ 0 với mọi a,b,c.
=> (a-b)^2 + (b-c)^2 + (c -a)^2 ≧ 0 (2)
Từ (1) và (2) :
=>a - b = 0; b - c = 0 ; c - a = 0 => a=b=c
Vậy a=b=c.

b,Ta có:(a+b+c)^2=3(a^2+b^2+c^2)

<=>a^2+b^2+c^2+2ab+2ac+2bc=3a^2+3b^2+3c^2

<=>a^2+b^2+c^2+2ab+2ac+2bc-3a^2-3b^2-3c^2=0

<=>-2a^2-2b^2-2c^2+2ab+2ac+2bc=0

<=>(-a^2+2ab-b^2)+(-b^2+2bc-c^2)+(-a^2+2ac-c^2)=0

<=>(-a+b)^2+(-b+c)^2+(-a+c)^2=0(1)

ta có:(-a+b)^2≧0, (-b+c)^2≧0, (-a+c)^2≧0(2)với mọi a,b,c.

từ (1)và (2)=>(-a+b)^2=0; (-b+c)^2=0; (-a+c)^2=0

<=>-a+b=0; -b+c=0; -a+c=0

<=>a=b=c

c, (a + b + c)^2=3(ab+ac+bc)
<=>a^2 +b^2+c^2+2ab+2ac+2bc -3ab-3ac-3bc=0
<=>a^2+b^2+c^2-ab-ac-bc=0
<=> 2a^2+2b^2+2c^2-2ab-2ac-2bc=0
<=> (a^2 - 2ab + b^2) + (b^2 - 2bc + c^2) + (c^2 - 2ca + a^2) = 0
<=> (a - b)^2 + (b - c)^2 + (c - a)^2 = 0
<=> a = b = c

Chúc bạn học tốtok


Các câu hỏi tương tự
NoName.155774
Xem chi tiết
Nguyễn Nhật Tiên Tiên
Xem chi tiết
Thanh Thanh
Xem chi tiết
Npro Gaming
Xem chi tiết
Linh
Xem chi tiết
Cathy Trang
Xem chi tiết
amime Nguyễn
Xem chi tiết
Hà Khánh Linh
Xem chi tiết
minami aki
Xem chi tiết