\(a^2+b^2+c^2+2ab+2bc+2ca=3a^2+3b^2+3c^2\)
\(2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Leftrightarrow a=b=c}\)
a2 +b2 +c2 +2ab +2bc +2ca = 3a2 +3b2 +3c2 .
2a2 +2b2 +2c2 -2ab -2bc -2ac = 0.
( a - b )2 + ( b - c )2 + ( c - a )2 = 0.