a ) \(\left(x+y+z\right)^2=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)
Biến đổi vế trái ta được :
\(\left(x+y+z\right)^2=\left(x+y+z\right)\left(x+y+z\right)\)
\(=x^2+xy+xz+xy+y^2+yz+zx+zy+z^2\)
\(=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)
Vậy \(\left(x+y+z\right)^2=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)
b ) \(\left(x+y+z\right)^3=x^{3^{ }}+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
Biến đổi vế trái ta được :
\(\left(x+y+z\right)^3=\left(x+y+z\right)\left(x+y+z\right)\left(x+y+z\right)\)
\(=x^3+y^3+z^3+3x^2y+3x^2z+3xy^2+3y^2z+3xz^2+3yz^2+6xyz\)
\(=x^{3^{ }}+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
Vậy \(\left(x+y+z\right)^3=x^{3^{ }}+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)