Lời giải:
$P=3a^2+5b^2-2a-2ab+1=a^2+(a^2-2ab+b^2)+(a^2-2a+1)+4b^2$
$=a^2+(a-b)^2+(a-1)^2+(2b)^2$
Dễ thấy $a^2\geq 0; (a-b)^2\geq 0; (a-1)^2\geq 0; (2b)^2\geq 0$
Do đó $P\geq 0$.
Dấu "=" xảy ra khi $a=a-b=a-1=2b=0$ (vô lý)
Suy ra $P>0$ (đpcm)
Lời giải:
$P=3a^2+5b^2-2a-2ab+1=a^2+(a^2-2ab+b^2)+(a^2-2a+1)+4b^2$
$=a^2+(a-b)^2+(a-1)^2+(2b)^2$
Dễ thấy $a^2\geq 0; (a-b)^2\geq 0; (a-1)^2\geq 0; (2b)^2\geq 0$
Do đó $P\geq 0$.
Dấu "=" xảy ra khi $a=a-b=a-1=2b=0$ (vô lý)
Suy ra $P>0$ (đpcm)
Gíup mình nhé, mình cảm ơn nhiều
1, Khai triển các đẳng thức sau
a/ (2a+3b)2 ; b/ (3a+5) (5-3a) ; c/ (x2-3y)2
2, Chứng minh rằng
a/ (2a+3)2+(3a-2)2=13(a2+1)
b/ (2a+3b)2-(2a-3b)2=24ab
c/ (1-2a) (1+2a) (1+4a2)=1-16a4
Bài 1. Cho a < b. So sánh: a/ 2a và a + b b/ - 3a và - 3b c/ 2a và 2b
Bài 2. Cho a < b. Chứng tỏ : a/ 2a – 3 < 2b – 3 b/ 3a + 1 < 3b + 1
Bài 3. a/ Cho m > n . Chứng minh : 2m – 3 > 2n - 4
b/ Cho a < b . Chứng minh: 2a - 3 < 2b + 5
cho các số a,b,c > 0. chứng minh:
1.\(\frac{a^2}{a+2b}+\frac{b^2}{b+2c}+\frac{c^2}{c+2a}\ge\frac{a+b+c}{3}\)
2.\(\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{a+b+c}{5}\)
Áp dụng BĐT Bunhia
1. Chứng minh các BĐT sau
a. \(3a^2+4b^2\ge7,với3a+4b=7\)
b. \(3a^2+5b^2\ge\frac{735}{47},với2a-3a=7\)
c. \(7a^2+11b^2\ge\frac{2464}{137},với3a-5b=8\)
d. \(a^2+b^2\ge\frac{4}{5},vớia+2b=2\)
2. Chứng minh các BĐT sau
a. \(a^2+b^2\ge\frac{1}{2},vớia+b\ge1\)
b. \(a^3+b^3\ge\frac{1}{4},vớia+b\ge1\)
c.\(a^4+b^4\ge\frac{1}{8},vớia+b=1\)
d. \(a^4+b^4\ge2,vớia+b=2\)
chứng minh rằng (a+b)/(căn(a*(3a+b))+căn(b*(3b+a)) >= 1/2
Cho các số thực dương \(a;b;c\) thỏa mãn : \(a+b+c=3\). Chứng minh rằng :
\(\dfrac{ab}{a+3b+2c}+\dfrac{bc}{b+3c+2a}+\dfrac{ac}{c+3a+2b}\le\dfrac{1}{2}\)
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán giúp đỡ em tham khảo với ạ!
Em cám ơn nhiều ạ!
Bài 1: Cho x, y, z > 0; x + y + z = 1. Tìm GTNN của biểu thức:
P = \(\dfrac{x}{x+1}\)+\(\dfrac{y}{y+1}\)+\(\dfrac{Z}{Z+1}\)
Bài 2: cho a, b, c > 0. Chứng minh rằng:
\(\dfrac{ab}{a+3b+2c}\) + \(\dfrac{bc}{b+3c+2a}\) + \(\dfrac{ac}{c+3a+2b}\) ≤ \(\dfrac{a+b+c}{6}\)
Bài 3: Cho a, b, c > 0 thỏa mãn abc = 1. Tìm GTLN của biểu thức:
P = \(\dfrac{1}{a^2+2b^2+3}\) + \(\dfrac{1}{b^2+2c^2+3}\) + \(\dfrac{1}{c^2+2a^2+3}\)
Cho các số thực dương \(a;b;c\) thỏa mãn :\(ab+bc+ca=abc\). Chứng minh rằng :
\(\dfrac{1}{a+2b+3c}+\dfrac{1}{b+2c+3a}+\dfrac{1}{c+2a+3b}\le\dfrac{1}{6}\).
P/s: Em xin phép nhờ quý thầy cô và các bạn bè hỗ trợ và giúp đỡ với ạ. Em cám ơn rất nhiều!
Cho a,b,c >0 . Chứng minh rằng : \(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}=1+\frac{b}{b+2a}+\frac{c}{c+2b}+\frac{a}{a+2c}\)