số các giá trị nguyên của tham số m thuộc ( -2020;2020) để phương trình : ( m+1)cosx+(m-1)sinx =2m+3 có 2 nghiệm x1,x2 thỏa mãn \(\left|x_1-x_2\right|=\dfrac{\pi}{3}\) là
Cho phương trình (cosx-1)(sinx+m)=0. Tìm các giá trị m để pt có đúng 2 nghiệm phân biệt thuộc \(\left[0;\pi\right]\)
Tìm m để phương trình \(sin4x\left(sinx+cosx\right)+msin2x=36\sqrt{2}\left(x-\frac{\pi}{4}\right)\) có 3 nghiệm phân biệt thuộc đoạn \(\left[0;\pi\right]\)
Tìm tất cả các giá trị của tham số m để pt có nghiệm :
a. sinx - cosx = m
b. sinx - (2m-1)cosx = m+2
Chưng minh phương trình sau luôn có nghiệm với mọi m :
sin4x +cos4x+msinx .cosx =1/2
1.Giải các pt sau
a) tan2x + cotx = 8cos2x
b) cotx - tanx + 4sin2x = 2 / sin2x ( dấu chia nha )
c) 5 sinx - 2 = 3(1 - sinx)tan2x
2.Tìm tham số m để pt có nghiệm
a) (m + 1)sin2x - sin2x + cos2x = 0
b) 2sin2x + msin2x = 2m
c) Nghiệm thuộc khoảng [0:π/4] sin2x - 4sinxcox + (m-2)cos2x = 0
tìm tất cả các giá trị của m để phương trình \(\dfrac{sinx+2}{cosx}=m\) vô nghiệm
Cho phương trình: m ( sinx + cosx + 1 ) = 1 + sin2x. Tìm m đê PT có nghiệm thuộc đoạn \(\left[0,\frac{\pi}{2}\right]\)
Cho phương trình: sin2x - 2mcosx = sinx - m. Tìm m để phương trình có đúng hai nghiệm thuộc đoạn [ 0 ; \(\dfrac{3\pi}{4}\) ]