tìm tất cả các giá trị của m để phương trình \(\dfrac{sinx+2}{cosx}=m\) vô nghiệm
số các giá trị nguyên của tham số m thuộc ( -2020;2020) để phương trình : ( m+1)cosx+(m-1)sinx =2m+3 có 2 nghiệm x1,x2 thỏa mãn \(\left|x_1-x_2\right|=\dfrac{\pi}{3}\) là
Cho phương trình (cosx-1)(sinx+m)=0. Tìm các giá trị m để pt có đúng 2 nghiệm phân biệt thuộc \(\left[0;\pi\right]\)
tìm tất cả giá trị của m để hàm số sau có tập xác định R
a)y=\(\sqrt{m-cosx}\)
b)y=\(\sqrt{2sinx-m}\)
c)y=\(\dfrac{sinx-1}{cosx+m}\)
1.Sin2x(x/2-π/4)tan2x-cos2x/2 =0
2.((2sinx-cosx)(1+cosx))/sinx =sinx
3. Tìm m để pt msinx-(3m+1)cosx=1-2m có nghiệm
4. Tìm m để cos2x-(m2-3)sinx+2m2-3=0 có nghiệm
Tìm tất cả các giá trị thực của tham số m để phương trình \(cosx+sinx=\sqrt{2}\left(m^2+1\right)\) vô nghiệm
tìm tất cả các nghiệm thuộc đoạn [ -pi;pi] của pt sinx - căn bậc hai(3)cosx=1
Tìm m để GTNN của hàm số \(y=\dfrac{m.cosx+\left(2m-1\right).sinx+3-m}{cosx+sinx-2}\) không quá 3
tìm tất cả các giá trị của m để phương trình sinx=2m có 2 nghiệm phân biệt trên đoạn 0; \(\pi\)