\(\frac{sin2x-cosx}{2sinx-1}+sinx=\frac{2sinx.cosx-cosx}{2sinx-1}+sinx\)
\(=\frac{cosx\left(2sinx-1\right)}{2sinx-1}+sinx=cosx+sinx=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\)
\(\frac{sin2x-cosx}{2sinx-1}+sinx=\frac{2sinx.cosx-cosx}{2sinx-1}+sinx\)
\(=\frac{cosx\left(2sinx-1\right)}{2sinx-1}+sinx=cosx+sinx=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\)
Gọi M = 1 + sin2x + cos2x thì:
A. M = 2cosx.(sinx - cosx)
B. M = cosx.(sinx + cosx)
C. M = \(\sqrt{2}\)cosx.cos(x - \(\frac{\pi}{4}\))
D. M = \(2\sqrt{2}\)cosx.cos(x - \(\frac{\pi}{4}\))
Bài 1 : Chứng minh rằng
a) \(\frac{1-sinx}{cosx}=\frac{cosx}{1+sinx}\)
b) \(\frac{tanx}{sinx}-\frac{sinx}{cotx}=cosx\)
Bài 2 : Chứng minh các biểu thức sau độc lập với biến x
A= \(\frac{cot^2x-cos^2x}{cot^2x}+\frac{sinxcosx}{cotx}\)
B= \(cos^4x+sin^2xcos^2x+sin^{2^{ }}x\)
Bài 3 : Tính giá trị các biểu thức lượng giác
A=\(\frac{5cosx+6tanx}{5cosx-6tanx}\) biết tanx=2
B= \(\frac{4sinxcosx-3cos^2x}{^{ }1+3sin^2x}\) biết cotx = -6
Bài 4 : Tính giá trị các biểu thức lượng giác
A= \(\frac{cotx}{cotx-tanx}\) biết sinx=\(\frac{3}{5}\) với \(0^o< x\le90^o\)
B= sina+cosa tana biết cosa=\(\frac{1}{2}\) với \(\frac{3\pi}{2}< a< 2\pi\)
Bài 5 : Tính giá trị lượng giác còn lại của góc 2a nếu :
a) cos2\(\alpha\) = \(\frac{2}{5}\) biết \(0< \alpha< \frac{\pi}{4}\)
b) sin2\(\alpha\) = \(\frac{24}{25}\) biết \(\frac{-3\pi}{4}\le\alpha\le-\frac{\pi}{2}\)
1. Cho sinx=-3/5 , x thuộc (-π/2 , 0) . Tính A= sinx + 6 cosx -3 tanx .
2. Cho cotx = 3 . Tính B=5sinx + 3cosx / 3cosx - 2sinx
3. Cho cosx=2/3 . Tính C= cotx-2tanx / 5cotx + tanx
4. Chứng minh ;
Cosx/ 1+ sinx +tanx = 1/ cosx
Chứng minh đẳng thức sau
\(\dfrac{cos^3x-cos3x}{cosx} + \dfrac{sin^3x+sin3x}{sinx} = 3\)
rut gon
\(A=\frac{1-sinx-cos2x}{sin2x-cosx}\)
\(B=\frac{sin2x+sinx}{1+cos2x+cosx}\)
\(C=\frac{tana-cota}{tana+cota}+cos2a\)
B=1+cosx/sinx[1 - (1-cosx)2 /sin2x]
(một cộng cốtx trên sinx nhân (một trừ cho [(1 trừ cosx)tất cả bình ] trên sin 'bình'x )
Câu 1 : Dùng công thức cộng chứng minh các đẳng thức sau :
a/ sin(\(\frac{\pi}{4}+x\)) -sin \(\left(\frac{\pi}{4}-x\right)\)=\(\sqrt{2}sinx\)
b/ cos(x+y) cos(x-y)=cos\(^2\)x - sin\(^2\)y
c/\(\frac{tan^2x-tan^2y}{1-tan^2x.tan^2y}=tan\left(x+y\right)tan\left(x-y\right)\)
d/ cot2x=\(\frac{cot^2x-1}{2cotx}\)
e/ sin15\(^o\) + tan30\(^o\) cos15\(^o\)=\(\frac{\sqrt{6}}{3}\)
f/ \(cos^2x-sin\left(\frac{\pi}{6}+x\right)sin\left(\frac{\pi}{6}-x\right)=\frac{3}{4}\)
h/ \(\frac{tanx+tany}{tan\left(x+ y\right)}-\frac{tanx-tany}{tan\left(x-y\right)}=-2tanx.tany\)
Chứng minh đẳng thức sau: Tanx/sinx - sinx/cotx = cosx
Tìm nghiệm của các phương trình sau:
a) \(sinx\left(sinx-2\right)=0\)
b) \(\left(2sinx-3\right)\left(2sinx-\sqrt{2}\right)=0\)
c) \(\frac{2sinx-1}{2sinx+1}=3\)
d) \(\frac{2}{3-sinx}=1\)