chứng minh : \(\left(\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}}-\sqrt{ab}\right):\left(a-b\right)+\dfrac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}=1\)
Khử mẫu của biểu thức lấy căn
\(a,\sqrt{\dfrac{-2}{3a^2}}\) (a<0)
\(b,\sqrt{\dfrac{1}{200}}\)
\(c,\sqrt{\dfrac{7}{500}}\)
\(d,\sqrt{\dfrac{3}{98}}\)
\(e,\sqrt{\dfrac{\left(1-\sqrt{2}\right)^2}{8}}\)
\(f,a\sqrt{\dfrac{1}{a}}\left(a>0\right)\)
\(g,\sqrt{\dfrac{4a^3}{64b}}\left(a,b< 0\right)\)
\(h,2ab\sqrt{\dfrac{3}{ab}}\left(ab>0\right)\)
B=\(\left(\dfrac{3}{\sqrt{1+a}}+\sqrt{1-a}\right):\left(\dfrac{3}{\sqrt{1-a^2}}+1\right)\)
a) Rút gọn
b) Tìm B khi a=\(\dfrac{\sqrt{3}}{2+\sqrt{3}}\)
c) Tìm a để \(\sqrt{B}>B\)
chứng minh biểu thức sau không phụ thuộc vào biến
\(\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right):\left(\frac{\sqrt{a}+\sqrt{b}}{a-b}\right)^2\)
Rút gọn các biểu thức sau (giả thiết các biểu thức chữ đều có nghĩa):
a. \(\sqrt{18\left(\sqrt{2}-\sqrt{3}\right)^2};\)
b. \(ab\sqrt{1+\dfrac{1}{a^2b^2}};\)
c. \(\sqrt{\dfrac{a}{b^3}+\dfrac{a}{b^4}};\)
d. \(\dfrac{a+\sqrt{ab}}{\sqrt{a}+\sqrt{b}}.\)
Rút gọn:
A = \(\sqrt{27.48\left(1-a^2\right)}\) với a > 1
B = \(\dfrac{1}{a-b}\sqrt{a^4\left(a-b\right)^2}\) với a > b
C = \(\sqrt{5a}.\sqrt{45a}-3a\) với a ≥ 0
D = \(\left(3-a\right)^2-\sqrt{0,2}.\sqrt{180a^2}\) với a tùy ý
rút gọn
\(\sqrt{18\left(\sqrt{2}-\sqrt{3}\right)^2}\)
\(ab\sqrt{1+\dfrac{1}{a^2b^2}}\)
\(\sqrt{\dfrac{a}{b^3}+\dfrac{a}{b^4}}\)
\(\dfrac{a+\sqrt{ab}}{\sqrt{a+\sqrt{b}}}\)
Tính giá trị biểu thức (Nhân thêm số căn vào biểu thức để làm xuất hiện hằng đẳng thức \(\left(a\pm\sqrt{b}\right)^2\) hoặc \(\left(\sqrt{a}\pm\sqrt{b}\right)^2\) rồi phá căn)
a. \(\left(4\sqrt{2}+\sqrt{30}\right).\left(\sqrt{5}-\sqrt{3}\right).\sqrt{4-\sqrt{15}}\)
b. \(\dfrac{\sqrt{3}+1}{2}.\sqrt{8-2\sqrt{3}}\)
Bài 1: Tính:
\(\dfrac{1}{\sqrt{3}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{\sqrt{3}}\sqrt{\dfrac{5}{12}-\dfrac{1}{\sqrt{6}}}\)
Bài 2: Rút gọn rồi tính:
a) A=\(\dfrac{a^4-4a^2+3}{a^4-12a^2+27},a=\sqrt{3}-\sqrt{2}\)
b) \(B=\dfrac{1}{\sqrt{h+2\sqrt{h-1}}}+\dfrac{1}{\sqrt{h-2\sqrt{h-1}}},h=3\)
c) \(C=\dfrac{\sqrt{2x+2\sqrt{x^2-4}}}{\sqrt{x^2-4}x+2},x=2\left(\sqrt{3}+1\right)\)
d) \(D=\left(\dfrac{3}{\sqrt{1+a}}+\sqrt{1-a}\right):\left(\dfrac{3}{\sqrt{1-a^2}}+1\right),a=\dfrac{\sqrt{3}}{2+\sqrt{3}}\)
Mọi người giúp em với!!!!!!!!!!!!!!