Rút gọn các biểu thức sau (giả thiết các biểu thức chữ đều có nghĩa):
a. \(\sqrt{18\left(\sqrt{2}-\sqrt{3}\right)^2};\)
b. \(ab\sqrt{1+\dfrac{1}{a^2b^2}};\)
c. \(\sqrt{\dfrac{a}{b^3}+\dfrac{a}{b^4}};\)
d. \(\dfrac{a+\sqrt{ab}}{\sqrt{a}+\sqrt{b}}.\)
B=\(\left(\dfrac{3}{\sqrt{1+a}}+\sqrt{1-a}\right):\left(\dfrac{3}{\sqrt{1-a^2}}+1\right)\)
a) Rút gọn
b) Tìm B khi a=\(\dfrac{\sqrt{3}}{2+\sqrt{3}}\)
c) Tìm a để \(\sqrt{B}>B\)
Bài 1 Rút gọn biểu thức:
a) \(\dfrac{\sqrt{3-\sqrt{5}.}\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}\)
b) \(\dfrac{4}{\sqrt{3}+1}+\dfrac{1}{\sqrt{3}-1}+\dfrac{6}{\sqrt{3}-3}\)
Bài 1: Tính:
\(\dfrac{1}{\sqrt{3}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{\sqrt{3}}\sqrt{\dfrac{5}{12}-\dfrac{1}{\sqrt{6}}}\)
Bài 2: Rút gọn rồi tính:
a) A=\(\dfrac{a^4-4a^2+3}{a^4-12a^2+27},a=\sqrt{3}-\sqrt{2}\)
b) \(B=\dfrac{1}{\sqrt{h+2\sqrt{h-1}}}+\dfrac{1}{\sqrt{h-2\sqrt{h-1}}},h=3\)
c) \(C=\dfrac{\sqrt{2x+2\sqrt{x^2-4}}}{\sqrt{x^2-4}x+2},x=2\left(\sqrt{3}+1\right)\)
d) \(D=\left(\dfrac{3}{\sqrt{1+a}}+\sqrt{1-a}\right):\left(\dfrac{3}{\sqrt{1-a^2}}+1\right),a=\dfrac{\sqrt{3}}{2+\sqrt{3}}\)
Mọi người giúp em với!!!!!!!!!!!!!!
Rút gọn biểu thức
\(a.\dfrac{\sqrt{5}-2\sqrt{3}}{\sqrt{5}+\sqrt{3}}-\dfrac{2\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}\)
\(b.x\sqrt{2x+2}+\left(x+1\right)\sqrt{\dfrac{2}{x+1}}-4\sqrt{\dfrac{x+1}{2}}\)
Rút gọn các biểu thức :
a) \(\dfrac{2}{\sqrt{3}-1}-\dfrac{2}{\sqrt{3}+1}\)
b) \(\dfrac{5}{12\left(2\sqrt{5}+3\sqrt{2}\right)}-\dfrac{5}{12\left(2\sqrt{5}-3\sqrt{2}\right)}\)
c) \(\dfrac{5+\sqrt{5}}{5-\sqrt{5}}+\dfrac{5-\sqrt{5}}{5+\sqrt{5}}\)
d) \(\dfrac{\sqrt{3}}{\sqrt{\sqrt{3+1}}-1}-\dfrac{\sqrt{3}}{\sqrt{\sqrt{3+1}}+1}\)
Cho M= \(\left(1-\dfrac{x-3\sqrt{x}}{x-9}\right):\left(\dfrac{9-x}{x+\sqrt{x}-6}-\dfrac{\sqrt{x}-3}{2-\sqrt{x}}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
a) Rút gọn M
b) Tìm các giá trị của x để có \(\dfrac{5}{3}M\) = \(\sqrt{x}+4\)
chứng minh : \(\left(\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}}-\sqrt{ab}\right):\left(a-b\right)+\dfrac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}=1\)
Rút gọn
\(A=\dfrac{1+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{1-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(B=\dfrac{1}{\sqrt{1}-\sqrt{2}}+\dfrac{1}{\sqrt{2}-\sqrt{3}}+....+\dfrac{1}{\sqrt{n-1}-\sqrt{n}}\) (n thuộc N, n>=2)