a) ĐS: .
b) ĐS: Nếu thì
Nếu ab
c) ĐS:
d)
Nhận xét. Nhận thấy rằng để có nghĩa thì Do đó . Vì thế có thể phân tích tử thành nhân tử.
a) ĐS: .
b) ĐS: Nếu thì
Nếu ab
c) ĐS:
d)
Nhận xét. Nhận thấy rằng để có nghĩa thì Do đó . Vì thế có thể phân tích tử thành nhân tử.
a. \(\sqrt{18\left(\sqrt{2}-\sqrt{3}\right)^2}\) = \(3\sqrt{2}\left(\sqrt{3}-\sqrt{2}\right)=-3+3\sqrt{6}\)
b.\(ab\sqrt{1+\dfrac{1}{a^2b^2}}=\sqrt{a^2b^2\left(1+\dfrac{1}{a^2b^2}\right)}=\sqrt{a^2b^2+1}\)
c.\(\sqrt{\dfrac{a}{b^3}+\dfrac{a}{b^4}}=\sqrt{\dfrac{ab+a}{b^4}}=\dfrac{\sqrt{ab+a}}{\sqrt{b^4}}=\dfrac{\sqrt{ab+a}}{b^2}\)
d. \(\dfrac{a+\sqrt{ab}}{\sqrt{a}+\sqrt{b}}=\dfrac{\left(a+\sqrt{ab}\right)\left(\sqrt{a}-\sqrt{b}\right)}{a-b}=\dfrac{a\sqrt{a}+a\sqrt{b}-a\sqrt{b}-b\sqrt{a}}{a-b}=\dfrac{a\sqrt{a}-b\sqrt{a}}{a-b}=\dfrac{\sqrt{a}\left(a-b\right)}{a-b}=\sqrt{a}\)