Cho △ABC. CMR với mọi điểm M ta có \(\overrightarrow{MA}.\overrightarrow{BC}+\overrightarrow{MB}.\overrightarrow{CA}+\overrightarrow{MC}.\overrightarrow{AB}=0\)
Cho tam giác ABC vuông tại A. Tìm tập hợp các điểm M thỏa:
a. \(\overrightarrow{MA}.\overrightarrow{MB}=\overrightarrow{MA}.\overrightarrow{MC}\)
b. \(\overrightarrow{MB}.\overrightarrow{MC}=\overrightarrow{AB}.\overrightarrow{AC}\)
c. \(\overrightarrow{MB}.\overrightarrow{MC}=MA^2\)
Cho hình vuông ABCD cạnh a và có tâm O. Tập hợp các điểm M thoả mãn \(\overrightarrow{MA}.\overrightarrow{MC}+\overrightarrow{MB}.\overrightarrow{MD}=a^2\) là?
Cho hình vuông ABCD cạnh a, tâm O. Tìm tập hợp điểm M sao cho:
\(\overrightarrow{MA}.\overrightarrow{MB}+\overrightarrow{MC}.\overrightarrow{MD}=5a^2\)
Cho tứ giác ABCD, I và J lần lượt là trung điểm của AB và CD. Tìm tập hợp điểm M sao cho
\(\overrightarrow{MA}.\overrightarrow{MB}+\overrightarrow{MC}.\overrightarrow{MD}=\dfrac{1}{2}.\overrightarrow{IJ}\)
Cho tam giác ABC có AB=5; AC=6; \(\widehat{A}\)=120
a) Tính \(\overrightarrow{BA}\cdot\overrightarrow{AC}\) và độ dài BC
b) Gọi N là điểm thỏa mãn \(\overrightarrow{NA}+2\overrightarrow{AC}=\overrightarrow{0}\). Gọi K là điểm trên cạnh BC sao cho \(\overrightarrow{BK}=x\overrightarrow{BC}\). Tìm x để AK⊥BN
M là trung điểm AB. Tínhtich vo huong cua
\(\overrightarrow{MA}.\overrightarrow{AB},\overrightarrow{MA}.\overrightarrow{MB},\overrightarrow{AM}.\overrightarrow{AB}\)
cho tam giác ABC, tìm tập hợp điểm M thỏa mãn:\(\overrightarrow{MA}.\overrightarrow{MB}=k\) (k là 1 số cho trước)
Cho tam giác ABC và ba trung tuyến AM,BN,CP.Chứng minh:
\(\overrightarrow{AM}.\overrightarrow{BC}+\overrightarrow{BN}.\overrightarrow{CA}+\overrightarrow{CP}.\overrightarrow{AB}=0\)
Cho tam giác ABC và điểm M bất kỳ,chứng minh:
\(\overrightarrow{AM}.\overrightarrow{BC}+\overrightarrow{BM}.\overrightarrow{CA}+\overrightarrow{CM}.\overrightarrow{AB}=0\)