\(A=\dfrac{2tan^2a+\dfrac{5}{cos^2a}}{4-\dfrac{3}{cos^2a}}=\dfrac{2tan^2a+5\left(1+tan^2a\right)}{4-3\left(1+tan^2a\right)}=...\) (bạn tự thay số bấm máy nhé)
\(B=\dfrac{3cot^2a-1}{cot^2a+2}=...\)
\(A=\dfrac{2tan^2a+\dfrac{5}{cos^2a}}{4-\dfrac{3}{cos^2a}}=\dfrac{2tan^2a+5\left(1+tan^2a\right)}{4-3\left(1+tan^2a\right)}=...\) (bạn tự thay số bấm máy nhé)
\(B=\dfrac{3cot^2a-1}{cot^2a+2}=...\)
Cho CosB.CosC=\(\dfrac{1}{4}\) và a2.(a-b-c)=a3-b3-c3. Chứng minh tam giác ABC đều
Cho tam giác đều ABC cạnh a . Tập hợp các điểm M thỏa mã đẳng thức
\(4\overrightarrow{MA}^2+\overrightarrow{MB^2}+\overrightarrow{MC}^2=\dfrac{5a^2}{2}\)
nằm trên một đường tròn bán kính R . Tính R ?
trong mat phang toa do Oxy, cho 2 vec to \(\overrightarrow{u}=\dfrac{1}{2}\overrightarrow{i}-5\overrightarrow{j}\)và \(\overrightarrow{v}=k.\overrightarrow{i}-4\overrightarrow{j}\). tìm k để \(\overrightarrow{u}\)vuông góc với \(\overrightarrow{v}\)
1. Cho tam giác ABC cân tại A , góc A=120° và AB=a . Tính vectơ BA.CA
2. Cho tam giác ABC có A(1;2) , B(-1;1) , C( 5;-1). Tính cos A
24. Cho hình.vuông ABCD , tính cos(vecto AB,CA)
25. Cho hai điểm A( -3;2) , B(4;3). Tìm điểm M thuộc trục Ox vag có hoành độ dương để tâm giác MAB vuông tại M.
28. Cho hình vuông ABCD có cạnh a. Tính vectơ AB.AD.
33. Tính ( vectơ a,b) biết vectơ a.b = -1/2 |a|. |b| ( vectơ a,b #0)
Trong tam giác ABC có G là trọng tâm . Chứng minh
\(m_a+m_b+m_c\le\dfrac{9}{2}R\)
Cho tứ giác ABCD, I và J lần lượt là trung điểm của AB và CD. Tìm tập hợp điểm M sao cho
\(\overrightarrow{MA}.\overrightarrow{MB}+\overrightarrow{MC}.\overrightarrow{MD}=\dfrac{1}{2}.\overrightarrow{IJ}\)
bài 1: cho tam giác ABC đều cạnh a trọng tâm G tính các tích vô hướng \(\overrightarrow{AB}.\overrightarrow{AC}\) ; \(\overrightarrow{AC}.\overrightarrow{CB}\) ; \(\overrightarrow{AG.}\overrightarrow{AB}\) ; \(\overrightarrow{GB.}\overrightarrow{GC}\) theo a
bài 2: cho tam giác ABC vuông tại A có AB =a BC=2a tính các tích vô hướng \(\overrightarrow{AB.}\overrightarrow{AC}\) ; \(\overrightarrow{AC.}\overrightarrow{CB}\) ; \(\overrightarrow{AB.}\overrightarrow{BC}\) theo a
bài 3: cho tam giác ABC có AB =4 BC=8 AC=6
a) tính \(\overrightarrow{AB.}\overrightarrow{AC}\) từ đó suy ra cos A
b) gọi G là trọng tâm của tam giác ABC tính tích vô hướng \(\overrightarrow{AG.}\overrightarrow{BC}\)
bài 4: cho tam giác ABC vuông tại A có BC =a\(\sqrt{3}\) AM là trung tuyến và \(\overrightarrow{AM.}\overrightarrow{BC}\) =\(\frac{a^2}{2}\) tính AB và AC theo a