Lời giải:
Vì $xyz=1$ nên:
\(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{xyz}{x}+\frac{xyz}{y}+\frac{xyz}{z}=xy+yz+xz\)
\(\Leftrightarrow x+y+z-xy-yz-xz=0\)
\(\Leftrightarrow 1+x+y+z-xy-yz-xz-1=0\)
\(\Leftrightarrow xyz+x+y+z-xy-yz-xz-1=0\)
\(\Leftrightarrow xy(z-1)+(x+y-yz-xz)+(z-1)=0\)
\(\Leftrightarrow xy(z-1)-x(z-1)-y(z-1)+(z-1)=0\)
\(\Leftrightarrow (z-1)(xy-x-y+1)=0\)
\(\Leftrightarrow (z-1)(x-1)(y-1)=0\)
Do đó:
\(P=(x^{1999}-1)(y^{2018}-1)(z^{2019}-1)\)
\(=(x-1)(x^{1998}+x^{1997}+...+1)(y-1)(y^{2017}+...+1)(z-1)(z^{2018}+....+1)\)
\(=(x-1)(y-1)(z-1).A=0.A=0\)