Cho 3 số x, y, z TM: \(\left\{{}\begin{matrix}x+y+z=2017\\\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{2017}\end{matrix}\right.\)
Tính GTBT: \(P=\left(x^{2017}+y^{2017}\right)\left(y^{2019}+z^{2019}\right)\left(z^{2021}+x^{2021}\right)\)
Cho x,y là 2 số dương thay đổi.Tìm giá trị nhỏ nhất của biểu thức:
\(S=\dfrac{\left(x+y\right)^2}{x^2+y^2}+\dfrac{\left(x+y\right)^2}{xy}\)
Cho 2 số thực dương x,y,z thảo mãn : xyz=1. Tìm giá trị lớn nhất của biểu thức :
\(P=\sum\dfrac{1}{\left(3x+1\right)\left(y+z\right)+x}\)
cho x,y,z thay đổi; x,y,z>=0; xy+yz+xz=xyz
tìm MAX : M=\(\dfrac{1}{4x+3y+z}+\dfrac{1}{4y+3z+x}+\dfrac{1}{4z+3x+y}\)
Giải phương trình:
a) \(\left\{{}\begin{matrix}x+y+\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{9}{2}\\xy+\dfrac{1}{xy}=\dfrac{5}{2}\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}4x^2+1=y^2-4x\\x^2+xy+y^2=1\end{matrix}\right.\)
Cho x\(\ge\)1, y \(\ge\)2, z\(\ge\)3
Cm \(\dfrac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\le\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}\)
1/ Giải pt: a/ \(\dfrac{3}{x^2+x-5}+\dfrac{2}{x^2+x-4}=-2\)
b/ \(x\left(\dfrac{5-x}{x+1}\right)\left(x+\dfrac{5-x}{x+1}\right)\)=6
2/ Cho hai số dương x,y thõa: \(x^3+y^3=x-y.CMR:x^2+y^2< 1\)
Cho các số dương x, y, z thỏa mãn: x +y + z = 4.
Chứng minh: \(\dfrac{1}{xy}+\dfrac{1}{xz}\ge1\)
Giải phương trình \(\left\{{}\begin{matrix}\dfrac{3}{x-2}+\dfrac{2}{y+1}=\dfrac{17}{5}\\\dfrac{2x-2}{x-2}-\dfrac{y+2}{y-1}=\dfrac{26}{5}\end{matrix}\right.\)