Ôn tập phương trình bậc hai một ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Isolde Moria

Cho 2 số thực dương x,y,z thảo mãn : xyz=1. Tìm giá trị lớn nhất của biểu thức :

\(P=\sum\dfrac{1}{\left(3x+1\right)\left(y+z\right)+x}\)

Nguyễn Thị Ngọc Thơ
28 tháng 1 2019 lúc 21:01

Hi anh trai, nhớ em là ai chứ :))

Áp dụng BĐT AM - GM: \(x+y+z\ge3\sqrt[3]{xyz}=3\)

\(P=\Sigma\dfrac{1}{\left(3x+1\right)\left(y+z\right)+x}\) \(=\Sigma\dfrac{1}{3x\left(y+z\right)+x+y+z}\)

\(\Rightarrow P\le\Sigma\dfrac{1}{3x\left(y+z\right)+3}\)

\(\Leftrightarrow3P\le\Sigma\dfrac{1}{x\left(y+z\right)+1}\)

Chia cả hai vế cho \(xyz=1\)

\(\Leftrightarrow3P\le\Sigma\dfrac{1}{\dfrac{1}{y}+\dfrac{1}{z}+1}\)

Đặt \(a=\sqrt[3]{\dfrac{1}{x^3}},b=\sqrt[3]{\dfrac{1}{y^3}},c=\sqrt[3]{\dfrac{1}{z^3}}\)

\(\Rightarrow a.b.c=1\)

\(\Rightarrow3P\le\Sigma\dfrac{1}{a^3+b^3+1}\)

Mặt khác: \(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-ab+b^2\ge ab\)

Nhân cả hai vế cho \(a+b\)

\(\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow a^3+b^3+1\ge ab\left(a+b\right)+1=ab\left(a+b\right)+abc\)

\(\Leftrightarrow a^3+b^3+1\ge ab\left(a+b+c\right)\)

\(\Leftrightarrow3P\le\Sigma\dfrac{1}{ab\left(a+b+c\right)}=1\)

\(\Leftrightarrow P\le\dfrac{1}{3}\)

Dấu ''='' xảy ra \(\Leftrightarrow x=y=z=1\)


Các câu hỏi tương tự
Dũng Trịnh
Xem chi tiết
ngọc linh
Xem chi tiết
Anh Khương Vũ Phương
Xem chi tiết
ngọc linh
Xem chi tiết
Huy Nguyen
Xem chi tiết
James Pham
Xem chi tiết
Nguyen Thi Phung
Xem chi tiết
Quillen
Xem chi tiết
DTD2006ok
Xem chi tiết