cho x,y,z > 0 . Cmr: \(\frac{x^4}{y^2\left(x+z\right)}+\frac{y^4}{z^2\left(x+y\right)}+\frac{z^4}{x^2\left(y+z\right)}\ge\frac{x+y+z}{2}\)
Áp dụng BĐT Cô-si để tìm Max
a. \(y=\left(x+3\right)\left(5-x\right),\left(-3\le x\le5\right)\)
b. \(y=x\left(6-x\right)\left(0\le x\le6\right)\)
c. \(y=\left(x+3\right)\left(5-2x\right)\left(-3\le x\le\frac{5}{2}\right)\)
d. \(y=\left(2x+5\right)\left(5-2x\right)\left(-\frac{5}{2}\le x\le5\right)\)
e. \(y=\left(6x+3\right)\left(5-2x\right)\left(-\frac{1}{2}\le x\le\frac{5}{2}\right)\)
f. \(y=\frac{x}{x^2+2},x\ge0\)
g. \(y=\frac{x^2}{\left(x^2+2\right)^3}\)
1) Cho a, b, c > 0 và a + b + c = 1. CMR: 9(a4 + b4 + c4) \(\ge\) a2 + b2 + c2.
2) Cho x, y, z dương thỏa mãn x + y + z = 1. CMR: \(\left(1+\frac{1}{x}\right)^4+\left(1+\frac{1}{y}\right)^4+\left(1+\frac{1}{z}\right)^4\ge768\)
1. Ap dụng BĐT Cô-si để tìm GTNN của các biểu thức sau
a. \(y=\frac{x}{2}+\frac{18}{x},x\ge0\)
b.\(y=\frac{x}{2}+\frac{2}{x-1},x\ge1\)
c.\(y=\frac{3x}{2}+\frac{1}{x+1},x\ge-1\)
d. \(y=\frac{x}{3}+\frac{5}{2x-1},x\ge\frac{1}{2}\)
e. y \(=\frac{x}{1-x}+\frac{5}{x},0\le x\le1\)
f. \(y=\frac{x^3+1}{x^2},x\ge0\)
g. \(y=\frac{x^2+4x+4}{x},x\ge0\)
cho \(z\ge y\ge x\ge0.CM:\)
\(y\left(\frac{1}{x}+\frac{1}{z}\right)+\frac{1}{y}\left(x+z\right)\le\left(x+z\right)\left(\frac{1}{x}+\frac{1}{z}\right)\)
a) \(x^4+y^4\ge xy\left(x^2+y^2\right)\)với mọi x,y b) cho a,b,c>0 thoả mãn abc=1 tìm GTLN : A = \(\frac{a}{b^4+c^4+a}+\frac{b}{c^4+a^4+b}+\frac{c}{a^4+b^4+c}\)
Cho x,y,z > 0, x + y + z \(\ge\)1 . Chứng minh :
\(\frac{x^5}{y^4}+\frac{y^5}{z^4}+\frac{z^5}{x^4}\ge1\)
giải các bất phương trình sau:
1) (x-2)(9-x2)≤0
2) (x2-x-6)(x2-3x+2)≥0
3) \(\frac{\left(x-2\right)\left(9-x\right)}{x-1}\)≤0
4) \(\frac{x\left(x^2-3x+2\right)}{x+4}\)≥0
5) \(\frac{\left(x+2\right)}{\left(x+1\right)\left(x-2\right)}\)<0
6) \(\frac{\left(x-2\right)\left(9-x^2\right)}{x-1}\)≥0
7) \(\frac{x^2\left(x-3\right)}{3x^2+x-4}\)≥0
8) \(\frac{x^2-3x+2}{9-x}\)≥0
9) \(\frac{x^2+1}{x^2+3x-10}\)≤0
10) \(\frac{x^2-9x+14}{x^2+9x+14}\)≥0
cho x,y,z>0 va x*y*z=1
cm: (x+y)*(y+z)*(z+x)\(\ge\frac{8}{3}\cdot\left(x+y+z\right)\)