Áp dụng bất đẳng thức Cauchy-Shwarz dạng Engel và \(a^2+b^2+c^2\ge ab+bc+ca\) có:
\(\dfrac{x^3}{y}+\dfrac{y^3}{z}+\dfrac{z^3}{x}=\dfrac{x^4}{xy}+\dfrac{y^4}{yz}+\dfrac{z^4}{xz}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{xy+yz+xz}\)
\(\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2}=x^2+y^2+z^2\ge1\)
Dấu " = " khi x = y = z = \(\dfrac{1}{\sqrt{3}}\)
Vậy...
Cách khác nhé!/-/
Áp dụng BĐT Holder ta có:
\(\left(\dfrac{x^3}{y}+\dfrac{y^3}{z}+\dfrac{z^3}{x}\right)\left(\dfrac{x^3}{y}+\dfrac{y^3}{z}+\dfrac{z^3}{x}\right)\left(y^2+z^2+x^2\right)\ge\left(x^2+y^2+z^2\right)^3\)
Do đó \(\dfrac{x^3}{y}+\dfrac{y^3}{z}+\dfrac{z^3}{x}\ge x^2+y^2+z^2\ge1\)
Đẳng thức xảy ra khi \(x=y=z=\dfrac{1}{\sqrt{3}}\)
Ta có: \(x^2+y^2+z^2\ge3\sqrt[3]{x^2y^2z^2}\)
\(\Rightarrow3\sqrt[3]{x^2y^2z^2}\ge1\)
lại có: \(\dfrac{x^3}{y}+\dfrac{y^3}{z}+\dfrac{z^3}{x}\ge3.\sqrt[3]{x^2y^2z^2}\)
\(\Rightarrow\dfrac{x^3}{y}+\dfrac{y^3}{z}+\dfrac{z^3}{x}\ge1\)