ÁP dụng AM-GM:
\(\sum\dfrac{a^2}{\sqrt{1-a^2}}=\sum\dfrac{a^3}{\sqrt{\left(1-a^2\right).a^2}}\ge\sum\dfrac{a^3}{\dfrac{1}{2}\left(1-a^2+a^2\right)}=2\sum a^3=2\left(đpcm\right)\)
Dấu = không xảy ra
ÁP dụng AM-GM:
\(\sum\dfrac{a^2}{\sqrt{1-a^2}}=\sum\dfrac{a^3}{\sqrt{\left(1-a^2\right).a^2}}\ge\sum\dfrac{a^3}{\dfrac{1}{2}\left(1-a^2+a^2\right)}=2\sum a^3=2\left(đpcm\right)\)
Dấu = không xảy ra
Cho x,y,z > 0 thỏa mãn x3 + y3 + z3 = 1. Chứng minh:
\(P=\dfrac{x^2}{\sqrt{1-x^2}}+\dfrac{y^2}{\sqrt{1-y^2}}+\dfrac{z^2}{\sqrt{1-z^2}}\)
với mọi x,y,z >0 CMR: \(\dfrac{1+\sqrt{x}}{y+z}+\dfrac{1+\sqrt{y}}{z+x}+\dfrac{1+\sqrt{z}}{x+y}\ge\dfrac{9+3\sqrt{3}}{2}\)
giúp mk với : cho x,y,z >0 và x3+y3+z3=0
chứng minh rằng \(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}\)>= 2với mọi x, y, z dương thỏa mãn x+y+z =1: CMR: \(\dfrac{1+\sqrt{x}}{y+z}+\dfrac{1+\sqrt{y}}{z+x}+\dfrac{1+\sqrt{z}}{x+y}\ge\dfrac{9+3\sqrt{3}}{2}\)
Cho x,y,z>0 C/M
\(\sqrt{\dfrac{x^3}{y^3}}+\sqrt{\dfrac{y^3}{z^3}}+\sqrt{\dfrac{z^3}{x^3}}\ge\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\)
Cho x,y,z > 0. Tìm GTNN của
P = (x-1)2 + (y-2)2 + (z-1)2 + \(\dfrac{12}{\left(x+y\right)\sqrt{x+y}+1}+\dfrac{12}{\left(y+z\right)\sqrt{y+z}+1}\)
cho x, y, z >0 thỏa mãn x+y+z=1
chứng minh rằng :\(\dfrac{3}{xy+yz+xz}+\dfrac{2}{x^{2^{ }}+y^{2^{ }}+z^{2^{ }}}\)≥14
Cho x,y,z > 0 có xy+yz+xz = 3xyz CMR : \(\dfrac{x^3}{x^2+z}+\dfrac{y^3}{y^2+x}+\dfrac{z^3}{z^2+y}\ge\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
Cho x,y,z và xyz \(\ge\) 1. CMR: \(\dfrac{x}{\sqrt{x+\sqrt{yz}}}+\dfrac{y}{\sqrt{y+\sqrt{xz}}}+\dfrac{z}{\sqrt{z+\sqrt{xy}}}\ge\dfrac{3}{\sqrt{2}}\)