cho hbh ABCD tâm O . vectơ AO= vecto a ; vecto BO = vecto b
a. CMR vecto AB+vecto AD =2 vecto AO
b. tính các vecto : AC;BD;AB;BC;CD;DA theo vecto a ,vecto b
Bài 1:
a,Cho vecto u=(4;3). Tìm vecto v, biết vecto v cùng phương và giá trị tuyệt đối vecto v =15
b,Cho vecto a=(2k+10 ; 5k+16)
vecto b=(-8; -16). Tìm số k để 2 vecto: vecto a và vecto b cùng phương
c,Cho 3 vecto: vecto a(3;1)
vecto b(-2;5)
vecto c(0;17)
*Hãy biểu diễn vecto c theo 2 vecto a và vecto b
*Cho vecto u=2m.vecto a + (1-m). vecto b . Hãy tìm số m để giá trị vecto u =9
Bài 2: Trong mặt phẳng tọa độ (O; vecto i; vecto j) cho A(1;-2); B(0;4); C(3;2). Hãy tìm tọa độ của
a,Điểm M, biết: vecto CM= 2.vecto AB-3.vecto AC
b,Điểm N, biết: vecto AN+ 2.vecto BN- 4 vecto CN= vecto 0
c,Tìm tọa độ điểm E là điểm đối xứng với điểm A qua điểm B
cho 3 điểm A(2;5) , B(1,1) , C(3;3)
tìm tọa độ D sao cho vectơ AD - 2 vecto AB-3 vecto AC
Chứng minh rằng với 2 vecto a,b không cùng phương ta có:
|vecto a| - |vecto b| < |vecto a + vecto b| < |vecto a| + |vecto b|
1. Trong mặt phẳng Oxy, có trọng tâm G(1,-1), M(2,1) và N(4,-2) lần lượt là trung điểm của AB, BC. Tìm tọa độ điểm B
2. Trong mặt phẳng Oxy, cho A(1,3), B(-2,2). Biết đường thẳng AB cắt trục tung tại điểm M(0,b). Giá trị b thuộc khoảng nào
3. Trong mặt phẳng tọa độ Oxy, cho A thỏa vecto OA= 2vecto i + 3vecto j. Tọa độ điểm A là
4. Trong mặt phẳng Oxy, cho vecto x=(1,2), vecto y=(3,4), vecto z=(5,-1). Tọa độ vecto u = 2vecto x + vecto y - vecto z là
5. Trong mặt phẳng tọa độ Oxy, cho M(2,-3), N(4,7). Tọa độ trung điểm I của đoạn thẳng MN là
6. Cho vecto x=(-4,7) và hai vecto a=(2,-1), b=(-3,4). Nếu vecto x = m vecto a + n vecto b thì m, n là cặp số nào
Cho tam giác ABC xác định điểm I thỏa:
a/ 2 vecto IA + vecto IB - vecto IC = vecto 0
b/ 2 vecto IA + 3 vecto IB - vecto IC = vecto 0
c/ 3 vecto IA - vecto IB + 2 vecto IC = vecto 0
1. Cho tam giác ABC
a. Dựng điểm R sao cho vecto AR= 1/3 vecto AB + 1/3 vecto AC
b. Gọi M là trung điểm cạnh AC. Cmr A,B,M thẳng hàng
2. Cho hình bình hành ABCD và 2 điểm E,F thoả mãn vecto DF= vecto CE = 1/3DC
Gọi I là giao điểm của AF và DB, J là giao điểm của AE và BC
a. Tính vecto AE theo vecto AJ
b. Cmr tứ giác ABEF là hình bình hành
c. Tính vecto DF theo vecto DE và tính vecto DI theo vecto DB. Cmr IJ // DC
3. Cho tam giác ABC và I,J là 2 điểm thoả mãn các hệ thức vecto
2IA +3IB -IC=0
2JA +3JB=0
a. -Biểu diễn vecto AI theo vecto AB và vecto AC
-Biểu diễn vecto CJ theo vecto CA và vecto CB
b. P,Q theo 2 điểm thoả mãn hệ thức vecto PQ= 2vecto PA+ 3 vecto PB - vecto PC
Cmr P,Q,I thẳng hàng
c. Gọi M là trung điểm của CQ. CM là đường thẳng PM đi qua J
4. Cho 2 điểm A,B cố định.Tìm Tập hợp điểm M ( quỹ tích M) trong mặt phẳng thoả mãn hệ thức
|MA+MB|=|MA-MB|
Cảm ơn đã giải giúp em ạ
2 vecto có cùng độ dài và ngược hướng gọi là
A. 2 vecto cùng hướng
B. 2 vecto cùng phương
C. 2 vecto đối nhau
D. 2 vecto bằng nhau
Cho hình bình hành ABCD. Gọi M,N,K là các điểm định bởi:
vecto AM = 2 vecto AB, vecto AN = 1/3 vecto AD, vecto AK = 2/7 vecto AC. Chứng minh 3 điểm M,K,N thẳng hàng