Cho tứ diện ABCD. Gọi P và Q lần lượt là trung điểm của các cạnh AB và CD. Trên các cạnh AC và BD ta lần lượt lấy các điểm M, N sao cho :
\(\dfrac{AM}{AC}=\dfrac{BN}{BD}=k,\left(k>0\right)\)
Cho tứ diện đều ABCD có cạnh a. Gọi M, N lần lượt là trung điểm của AB, CD. Tính độ dài đoạn MN theo a
Cho hình tứ diện ABCD. Gọi M và N lần lượt là trung điểm của AB và CD. Chứng minh rằng :
a) \(\overrightarrow{MN}=\dfrac{1}{2}\left(\overrightarrow{AD}+\overrightarrow{BC}\right)\)
b) \(\overrightarrow{MN}=\dfrac{1}{2}\left(\overrightarrow{AC}+\overrightarrow{BD}\right)\)
Cho tứ diện ABCD đều. Gọi G là trọng tâm của tam giác BCD.
a) Chứng minh AG\(\perp\) CD
b) Gọi M là trung điểm của CD . Tính góc giữa AC và BM .
Cho tứ diện ABCD đều. Gọi G là trọng tâm của tam giác BCD.
a) Chứng minh AG\(\perp\) CD
b) Gọi M là trung điểm của CD . Tính góc giữa AC và BM .
Cho tứ diện ABCD. Gọi M, N, H, K, I, J lần lượt là trung điểm của các cạnh : AB, CD, BC, AD, AC, BD
a) C/M:MN, HK, IJ đồng quy tại G ( G là trọng tâm tứ diện ABCD)
B)CMR: GA + GB+GC+GD=0 (có dấu vecto nha! )
C) CMR: FA +FB+FC+FD =4FG
D)CMR: AB+AC+AD =4AG
Cho tứ diện đều ABCD. Gọi M,N,P lần lượt là trung điểm AB,CB,AD, G là trọng tâm tam giác BCD. Tính góc giữa \(\overrightarrow{MG}\) và \(\overrightarrow{NP}\)
Cho hình hộp ABCD.A’B’C’D’. Xét các điểm M và N lần lượt thuộc các đường thẳng A’C và C’D sao cho vecto MA'= -3 vecto MC , vecto NC'= - vecto ND . Đặt vectoBA = A, vecto BB' =b , vecto BC= c. . Hãy biểu thị các vectơ BM và BN qua các vectơ a,b,c? CM: MN// BD'
Cho tứ diện ABCD; lần lượt lấy M, N thuộc các đoạn AB, CD sao cho: MA = 2MB và ND = 2NC. Các điểm I, J, P lần lượt thuộc các đoạn AD, MN, BC sao cho IA/ID = JM/JN = PB/PC = k. Chứng minh ba điểm I, J, P thẳng hàng.