Cho tứ giác ABCD, trên cạnh AB,CD lấy lần lượt các điểm M,N sao cho 3 vecto AM=2 vecto AB và 3 vecto DN =2 vecto DC. Tính vecto MN theo hai vecto AD, BC
Cho tứ giác ABCD trên cạnh AB, CD lần lượt lấy các điểm M,N sao cho 3vecto AM=2AB và 3vecto DN =2 vecto DC. Tính vecto MN theo hai vecto AD, vecto BC
Cho tứ giác ABCD. Gọi M, N theo thứ tự thuộc cách cạnh AD, BC sao cho \(\frac{AM}{AD}=\frac{CN}{CB}\)
CMR : khi M, N thay đổi thì trung điểm I của MN luôn nằm trên một đường thẳng cố định
Cho tứ giác ABCD. Hai điểm M, N thay đổi trên các cạnh AB, CD sao cho:
\(\dfrac{AM}{AB}=\dfrac{CN}{CD}\)
tìm tập hợp các trung điểm I của MN
Cho tứ giác ABCD, M,N là các điểm định bởi:
vecto AM = k vecto AD,0<k<1, vecto BN = k vecto BC. Chứng minh rằng trung điểm AB,CD,MN thẳng hàng
Cho tứ giác ABCD và M , N lần lượt là trung điểm của đoạn thẳng AB , CD . Chứng minh rằng :
a / \(\overrightarrow{CA}+\overrightarrow{DB}=\overrightarrow{CB}+\overrightarrow{DA}=2\overrightarrow{MN}\)
b / \(\overrightarrow{AD}+\overrightarrow{BD}+\overrightarrow{AC}+\overrightarrow{BC}=4\overrightarrow{MN}\)
c / Gọi I là trung điểm của BC . Chứng minh rằng : \(2\left(\overrightarrow{AB}+\overrightarrow{AI}+\overrightarrow{NA}+\overrightarrow{DA}\right)=3\overrightarrow{DB}\)
HELP ME !!!!!!!!!!!
Cho hình thang ABCD (AB//CD) CD=2AB M là trung điểm AB
Đặt vt BM =vt a;vt BC =vt b.Trên đoạn MC lấy I sao cho MI=k .MC (k thuộc R) phân tích vt BI,BD theo vt a và b .tìm k để B,I,D thẳng hàng
bài 1 . a, CM: A= x2+6x+13 > 0 với mọi giá trị x thuộc R
b, cho đa thức : B= 2x2+4y2-4x+4xy+13 . Tính giá trị nhỏ nhất của B
bài 2 . cho hình bình hành ABCD , gọi O là giao điểm của 2 đường chéo AC và BD. Trên cạnh AB lấy điểm E , trên cạnh CD lấy điểm F sao cho AE=CF
a, CM : E đối xứng với F qua O
b, từ E kẻ Ex //AC cắt BC tại I ,từ F kẻ Fy // AC cắt AD tại K
CM: EI=FK , I và K đối xứng với nhau qua O
bài 3 . Cho ab+bc+ac=1
CM : (a2+1)(b2+1)(c2+1) = (a+b)2 .(b+c)2 .(a+c)2
nhờ mọi người giúp mk vs . mk cảm ơn trước
Cho tứ giác ABCD.Trên cạnh AB,CD lấy lần lượt điểm M,N sao cho \(3\overrightarrow{AM}=2\overrightarrow{AB}\) và \(3\overrightarrow{DN}=2\overrightarrow{DC}\).Tính \(\overrightarrow{MN}\) theo \(\overrightarrow{AD}\) và \(\overrightarrow{BC}\)