Tự vẽ nhé, mk ko có tgian
1) Vẽ thêm EZ là tia đối EI sao cho EI = EZ => △EZD = △EIA (CGC) và nối I & D
=> <A = <D và AI = ZD, MÀ AI = IC => IC = ZD
=> AC // ZD => IC // ZD
=> <I = <D
=> △ZID =△CDI (c-g-c)
=> EI // CD
Tự vẽ nhé, mk ko có tgian
1) Vẽ thêm EZ là tia đối EI sao cho EI = EZ => △EZD = △EIA (CGC) và nối I & D
=> <A = <D và AI = ZD, MÀ AI = IC => IC = ZD
=> AC // ZD => IC // ZD
=> <I = <D
=> △ZID =△CDI (c-g-c)
=> EI // CD
Cho tứ giác ABCD . Gọi E ; F ; I lần lượt là trung điểm của AD , BC và AC
a) Chứng minh : EI // CD và IF // AB
b) Chứng minh : \(EF\le\dfrac{AB+CD}{2}\)
c) Tứ giác ABCD phải có điều kiện gì thì \(EF=\dfrac{AB+CD}{2}\)
Cho tứ giác ABCD có E là giao điểm của AB và CD; F là giao điểm của BC và AD. Các tia phân giác của góc E và góc F cắt nhau tại I. Chứng minh: Nếu BAD=1300; BCD = 500 thì IE vuông góc với IF (giải + vẽ hình)
Giúp tui vs bà con ơi!!!!
Tứ giác ABCD có E, F theo thứ tự là trung điểm của AD, AB.
a/ CMR \(EF\le\frac{AB+CD}{2}\)
b/ Tứ giác ABCD có điều kiện gì thì \(EF=\frac{AB+CD}{2}\)
Tứ giác ABCD có E, F theo thứ tự là trung điểm của AD, AB.
a/ CMR \(EF\le\frac{AB+CD}{2}\)
b/ Tứ giác ABCD có điều kiện gì thì \(EF=\frac{AB+CD}{2}\)
giúp mình bài này với!
Bài 1: Cho tứ giác ABCD có AB=AD, CB=CD, góc C =60o , góc A=100o
a, Chứng minh AC là đường trung trực của BD.
b, Tính góc B và góc D.
Bài 3: Cho tứ giác ABCD có <B +<D=180o , CB=CD. Trên tia đối của tia DA lấy điểm E, phân giác ngoài góc A và góc B cắt tại F. Chứng minh <AEB=<C+<D2<C+<D2 và <AFB=<A+<B/2
Bài 4: Cho tứ giác ABCD có <B+<D=180o , CB=CD. Trên tia đối của tia DA lấy điểm E sao cho DE=AB. Chứng minh:
a, △ABC và △EDC bằng nhau
b, AC là phân giác của góc A
Bài 5: Cho tứ giác ABCD biết số đo của các góc A,B,C,D tỉ lệ thuận với 5,8,13,10.
a, Tính số đo các góc của tứ giác ABCD.
b,Kéo dài hai cạnh AB và CD cắt nhau tại E, kéo dài hai cạnh AD và BC cắt nhau tại F. Hai tia phân giác của góc AED và góc AFB cắt nhau tại O. Phân giác góc AFB cắt cạnh CD VÀ AB lần lượt là M và N. CM: O là trung điểm đoạn MN.
giúp mình bài này với!
Bài 1: Cho tứ giác ABCD có AB=AD, CB=CD, góc C =60o , góc A=100o
a, Chứng minh AC là đường trung trực của BD.
b, Tính góc B và góc D.
Bài 3: Cho tứ giác ABCD có <B +<D=180o , CB=CD. Trên tia đối của tia DA lấy điểm E, phân giác ngoài góc A và góc B cắt tại F. Chứng minh <AEB=\(\dfrac{< C+< D}{2}\) và <AFB=<A+<B/2
Bài 4: Cho tứ giác ABCD có <B+<D=180o , CB=CD. Trên tia đối của tia DA lấy điểm E sao cho DE=AB. Chứng minh:
a, △ABC và △EDC bằng nhau
b, AC là phân giác của góc A
Bài 5: Cho tứ giác ABCD biết số đo của các góc A,B,C,D tỉ lệ thuận với 5,8,13,10.
a, Tính số đo các góc của tứ giác ABCD.
b,Kéo dài hai cạnh AB và CD cắt nhau tại E, kéo dài hai cạnh AD và BC cắt nhau tại F. Hai tia phân giác của góc AED và góc AFB cắt nhau tại O. Phân giác góc AFB cắt cạnh CD VÀ AB lần lượt là M và N. CM: O là trung điểm đoạn MN.
Cho tứ giác ABCD có E,F lần lượt là trung điểm của AD và BC. Đường thẳng EF cắt các đường thẳng AB,CD lần lượt tại M,N. Chứng minh rằng MA.NC=MB.ND
Cho tứ giác ABCD có hai đường chéo bằng nhau và cắt nhau tại O. Gọi M, N, P, Q tương ứng là trung điểm của các cạnh AB, BC, CD, DA.
a) Chứng minh tứ giác MNPQ có các cạnh bằng nhau.
b) MP cắt AC và BD tại E và F. Chứng minh rằng tam giác OEF cân
Cho tứ giác ABCD có E, F lần lượt là trung điểm AD, BC. Đường thẳng EF cắt các đường thẳng AB, CD lần lượt tại M, N. Cm: MA × NC = MB × ND