Cho tứ giác ABCD có E, F lần lượt là trung điểm AD, BC. Đường thẳng EF cắt các đường thẳng AB, CD lần lượt tại M, N. Cm: MA × NC = MB × ND
Cho tứ giác lồi ABCD có AD = BC. Đường thẳng qua trung điểm M và N của hai cạnh AB và CD cắt AD và BC lần lượt tại E và F.
Chứng minh rằng \(\widehat{AEM} = \widehat{MFB}\)
Cho tứ giác ABCD có AC vuông góc với BD. Gọi E,F lần lượt là trung điểm của AB và BC. Đường thẳng qua E vuông góc với CD, cắt đường thẳng qua F vuông góc với AD o M. Chứng minh 3 điểm B, M, D thẳng hàng
Cho tứ giác ABCD có hai đường chéo bằng nhau và cắt nhau tại O. Gọi M, N, P, Q tương ứng là trung điểm của các cạnh AB, BC, CD, DA.
a) Chứng minh tứ giác MNPQ có các cạnh bằng nhau.
b) MP cắt AC và BD tại E và F. Chứng minh rằng tam giác OEF cân
cho tứ giác lời abcd gọi m và p là 2 điểm thuộc ab sao cho am=mp=pb gọi n vsf q là 2 điểm trên cạnh cd, dn=nq=qc gọi e và f lần lượt là trung điểm của ad và bc .cm ef cắt mn và pq tại trung điểm của mỗi đoạn thẳng
Cho tứ giác ABCD. Gọi M là điểm bất kì trên cạnh AB. Từ M vẽ các đường thẳng song song với AC và BD chúng cắt BC và AC lần lượt tại N và Q. Từ N vẽ đường thẳng song song với BD cắt AC tại P. Tứ giác MNPQ là hình gì ? Vì sao?
Cho hình bình hành ABCD trên cạnh AB và CD lần lượt lấy các điểm M và N sao cho AM=DN Đường trung trực của BM lần lượt cắt các đường thẳng MN và BC tại E và F Chứng minh rằng
a) E và F đối xứng qua AB
b) Tứ giác MEBF là hình thoi
c) Hình bình hành ABCD phải có điều kiện gì để tứ giác BCNE là hình thang cân
Tam giác ABC có hai trung tuyến BM và CN cắt nhau tại G. Gọi P và Q lần lượt là các trung điểm BG và CG. a) Chứng minh MNPQ là hình bình hành. b) Từ M kẻ đường thẳng song song với AB cắt BC tại I. Chứng minh A, G, I thẳng hàng. c) Cho AI = 9cm, BC = 10cm. Tính chu vi tứ giác MNPQ.