Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của các cạnh BC và CD. CMR: SABCD<\(\frac{1}{2}\left(AM+AN\right)^2\)
Cho tứ giác ABCD . Gọi M , N , P , Q , E , F lần lượt là trung điểm của BD , AC , AB , DC , AD và BC
a, CMR : PM = NQ
b, CMR : MN , PQ và EF đồng quy
Cho tam giác ABC có AB ACGH.
1. Chứng minh BH = EC .
2. Vẽ hình bình hành 4EFH . Chứng minh rằng 4F vuông góc với BC.
3. Gọi O là giao điểm các đường trung trực của tam giác ABC, M và N lần lượt là trung điểm của
EH và BC, biết OH = OE . Chứng minh tứ giác AMON là hình bình hành và tính góc BỌC.
Cho hình vuông ABCD và M ∈BC .AM cắt DC tại N .CMR :\(\dfrac{1}{AB^2}=\dfrac{1}{AM^2}+\dfrac{1}{AN^2}\)
cho tứ giác ABCD có góc ADC + góc DCB=90\(^0\) , AD=BC, DC=a , AB=b. Gọi I,N,J,H lần lượt là trung điểm của AB,AC,CD,BD
Với S=S\(_{INJM}\)
CMR:S\(\ge\dfrac{\left(a-b\right)^2}{8}.\) dấu bằng xảy ra khi nào
Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm AB, BC. CD, DA. Chứng minh \(S_{ABCD}\le MP.NQ\)
Cho hình chữ nhật ABCD trên cạch AB ,BC,CD,AD lần lượt lấy các điểm M,N,P,Q sao cho \(\dfrac{AM}{AB}=\dfrac{BN}{BC}=\dfrac{CP}{CD}=\dfrac{DQ}{DA}=\dfrac{1}{3}\)
a,Chứng minh rằng MNPQ là hnhf bình hành
b,Gọi I là giao điểm của AN và AM .Chứng minh rằng \(\dfrac{IA}{AN}=\dfrac{3}{8}\)
Cho hình thoi ABCD có góc ABC=60°.Trên cạnh DC lấy điểm M sao cho góc MAD=15°Tia AM cắt BC tại N
a) CMR:1/AM^2+1/AN^2=4/3AB^2
b) Trên cạnh AB lấy điểm Q Kẻ NQ cắt AC tại P CMR: BN/BQ-CN/CP ko đổi khi Q di chuyển trên AB
bài 1 : cho hình chữ nhật abcd có ab=5cm bc=12cm
a). tính độ dài đoạn thẳng BD
b). kẻ AH vuông BD tại H . Tính độ dài đoạn thẳng AH.
c). đường thẳng AH cắt BC , DC lần lượt tại I và K . chứng minh rằng AH^2=HI.HK