Xét tứ giác ABCD có \(\widehat{A}+\widehat{C}=180^0\)
nên ABCD là tứ giác nội tiếp
Xét tứ giác ABCD có \(\widehat{A}+\widehat{C}=180^0\)
nên ABCD là tứ giác nội tiếp
Cho tứ giác ABCD có góc A và góc C = 90 độ
a, Chứng minh rằng 4 điểm A , B , C , D cùng thuộc 1 đường tròn
b, Chứng minh AC≤BD
Cho tam giác XYZ vuông tại X. Trên tia XZ lấy điểm A và vẽ đường tròn có đường kính AZ. Kẻ YA cắt đường tròn tại B. Đường thẳng BX cắt đường tròn tại C a, Chứng minh 4 điểm X,Y,Z,B cùng thuộc 1 đường tròn b, Chứng minh góc XYB bằng góc XZB c, XZ là tia phân giác của góc CZY
Cho tam giác ABC nhọn (AB < AC) , vẽ đường tròn tâm O đường kính BC cắt AB và AC tại D và E, CD cắt BE tại H. a) Chứng minh AH vuông góc BC. b) Chứng minh 4 điểm A, E, H, D cùng thuộc một đường đường tròn, xác định tâm I của đường tròn qua 4 điểm. c) Chứng minh 4 điểm B, C, D, E cùng thuộc 1 đường tròn. Xác định tâm O của đường tròn đi qua 4 điểm d) Chứng minh OI vuông góc với DE
Cho △ABC vuông cân tại B.Điểm I ∈BC, kẻ CE⊥AI.
a)Cho AB=8cm,BI=6cm.Tính AI,BM,AM.
b)Chứng minh 4 điểm A,B,E,C cùng thuộc 1 đường tròn tâm O.
c) Từ C kẻ đường thẳng vuông góc với BC cắt đường tròn tâm O tại D,cắt AI tại F.Chứng minh ABCD là hình vuông.
Cho tứ giác ABCD .
Có 2 đường chéo AC vuông góc với BD .
Gọi M,N,R,S lần lượt là trung điểm các cạnh AB,BC,CD,AD .
a) CMR: 4 điểm M,N,R,S thuộc cùng 1 đường tròn .
b) AC=24cm , BD=18cm .
Tính bán kính đường tròn ở câu (a) .
Cho tứ giác ABCD .
Có 2 đường chéo AC vuông góc với BD .
Gọi M,N,R,S lần lượt là trung điểm các cạnh AB,BC,CD,AD .
a) CMR: 4 điểm M,N,R,S thuộc cùng 1 đường tròn .
b) AC=24cm , BD=18cm .
Tính bán kính đường tròn ở câu (a) .
Cho tứ giác ABCD .
Có 2 đường chéo AC vuông góc với BD .
Gọi M,N,R,S lần lượt là trung điểm các cạnh AB,BC,CD,AD .
a) CMR: 4 điểm M,N,R,S thuộc cùng 1 đường tròn .
b) AC=24cm , BD=18cm .
Tính bán kính đường tròn ở câu (a) .