Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vangull

Cho tứ giác ABCD có 2 đỉnh B và C trên nửa đường tròn đường kính AD, tâm O. Hai đường chéo AC và BD cắt tại E. Gọi H là hình chiếu vuông góc từ E kẻ xuống AD và I là trung điểm DE. Cmr: 

a) ABEH và DCEH nội tiếp

b) E là tâm đường tròn nội tiếp tam giác BCH

c) 5 điểm B,C,I,O,H thuộc đường tròn

Akai Haruma
24 tháng 5 2021 lúc 1:38

Lời giải:

a) 

$\widehat{ABD}=\widehat{DCA}=90^0$ (góc nt chắn nửa đường tròn)

$\Leftrightarrow \widehat{ABE}=\widehat{DCE}=90^0$

Tứ giác $ABEH$ có tổng 2 góc đối $\widehat{ABE}+\widehat{AHE}=90^0+90^0=180^0$ nên là tứ giác nội tiếp.

Tứ giác $DCEH$ có tổng 2 góc đối $\widehat{DCE}+\widehat{EHD}=90^0+90^0=180^0$ nên là tứ giác nội tiếp.

b) 

Từ 2 tứ giác nội tiếp phần a, kết hợp với $ABCD$ là tứ giác nội tiếp, ta có:

\(\widehat{HBE}=\widehat{EAH}=\widehat{CAD}=\widehat{CBD}=\widehat{CBE}\) nên $BE$ là tia phân giác $\widehat{HBC}$

\(\widehat{HCE}=\widehat{EDH}=\widehat{BDA}=\widehat{BCA}=\widehat{BCE}\) nên $CE$ là tia phân giác $\widehat{BCH}$

Do đó $E$ chính là tâm đường tròn nội tiếp tam giác $BCH$

c) Sử dụng tính chất trung tuyến ứng với cạnh huyền thì bằng nửa cạnh huyền. Suy ra $IH=IC=EI=ID$.

Ta có:

\(\widehat{IHD}=\widehat{IDH}=\widehat{ODB}=\widehat{OBD}=\widehat{OBI}\) nên $OBIH$ là tứ giác nội tiếp $(1)$

Mặt khác:

$\widehat{HIC}=\widehat{HIB}+\widehat{CIB}$

$=2\widehat{IDH}+2\widehat{CDI}$

$=2\widehat{HDC}=2\widehat{ADC}=2(90^0-\widehat{CAD})$

$=180^0-2\widehat{CBE}=180^0-\widehat{CBH}$

$\Rightarrow BHIC$ là tứ giác nội tiếp $(2)$

Từ $(1);(2)$ suy ra đpcm.

 

Akai Haruma
24 tháng 5 2021 lúc 1:38

Hình vẽ:


Các câu hỏi tương tự
Diệu Bảo Trâm Nguyễn
Xem chi tiết
Trúc Nguyễn
Xem chi tiết
thái
Xem chi tiết
Thảo
Xem chi tiết
chanh
Xem chi tiết
annie
Xem chi tiết
Hồ Nguyễn Ngọc Trang
Xem chi tiết
Hồ Quang Hưng
Xem chi tiết
Trần Đức Huy
Xem chi tiết