Cho tam giác ABC nhọn (AB > AC) nội tiếp đường tròn (O;R) .Hai đường tròn AD và BE cắt nhau tại H. Vẽ đường kính của (O) cắt BC tại I. Gọi F là hình chiếu của C trên AB
a Chứng minh tứ giác ADFC nội tiếp
b Chứng minh AB . AC = 2R . AD
c CM: DF//CH
d Vẽ đường tròn đường kính AH cắt (O) tại K. Chứng minh HK đi qua trung điểm của BC
a:Xét tứ giác AFDC có
góc AFC=góc ADC=90 độ
Do đó: AFDC là tứ giác nội tiếp
b: Gọi AG là đường kính của (O)
Xét (O) có
ΔACG nội tiếp
AG là đường kính
Do đo: ΔACG vuông tại C
Xét ΔACG vuông tại C và ΔADB vuông tại D có
góc AGC=góc ABD
Do đó: ΔACG đồng dạng với ΔADB
=>AC/AD=AG/AB
=>AB*AC=AG*AD