Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vladislav Hoàng

Cho tam giác nhọn ABC nội tiếp đường tròn (O). Vẽ 3 đường cao AD, BE, CF cắt nhau tại trực tâm H. Các tiếp tuyến tại B, C của (O) cắt nhau tại S. AS cắt EF, DE, (O), BC tại I, L, K, J. Gọi M là trung điểm BC, N là trung điểm AB.
a) CMR BFEC nội tiếp và AE.AC=AF.AB
b) CMR SA/SK=JA/JK
c) CMR I là trung điểm EF
d) CMR L, M, N thẳng hàng
Em xin cảm ơn!

Nguyễn Lê Phước Thịnh
29 tháng 7 2021 lúc 11:42

a) Xét tứ giác BFEC có 

\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)

nên BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{BAE}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC(g-g)

Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)

hay \(AE\cdot AC=AB\cdot AF\)