Cho tam giác ABC nhọn, AB < AC nội tiếp đường tròn (O). Các đường cao BD và CE của tam giác ABC cắt nhau tại H. Gọi K là giao điểm của DE và CB.
a) CMR: Tứ giác BCDE nội tiếp
b) C/m : KB.KC = KE.KD
c) Gọi M là trung điểm của BC, AK cắt đường tròn (O) tại điểm thứ 2 là N. C/m : 3 điểm M, H, N thẳng hàng
1: Xét tứ giác BCDE có \(\widehat{BDC}=\widehat{BEC}=90^0\)
nên BCDE là tứ giác nội tiếp
2: Xét ΔKEB vuông tại E và ΔKDC vuông tại D có
góc EKB=góc DKC
Do đó: ΔEKB\(\sim\)ΔDKC
Suy ra: KE/KD=KB/KC
hay \(KE\cdot KC=KB\cdot KD\)