a: Xét ΔMHN vuông tại H và ΔMHP vuông tại H có
MN=MP
MH chung
=>ΔMHN=ΔMHP
b: ΔMHN=ΔMHP
=>HN=HP
=>H là trung điểm của NP
c: ΔMNH=ΔMPH
=>góc NMH=góc PMH
=>MH là phân giác của góc NMP
a: Xét ΔMHN vuông tại H và ΔMHP vuông tại H có
MN=MP
MH chung
=>ΔMHN=ΔMHP
b: ΔMHN=ΔMHP
=>HN=HP
=>H là trung điểm của NP
c: ΔMNH=ΔMPH
=>góc NMH=góc PMH
=>MH là phân giác của góc NMP
Cho △ ABC vuông tại a có AB = 6cm, AC = 8cm, vẽ trung tuyến AM (M ∈ BC). Từ M kẻ MH ⊥ AC (H ∈ AC), trên tia đối của tia MH lấy điểm K sao cho MK = MH.
a) Tính cạnh BC.
b) Chứng minh △ MHC = MKB.
c) chứng minh MH là tia phân giác của góc AMC.
d) Gọi G là giao điểm của BH và AM, I là trung điểm của AB. Chứng minh I, G, C thẳng hàng.
cho tam giác ABC cân tại a gọi là m là trung điểm của BC.
a) CM: tam giác ABM=tam giác ACM?
B)kẽ MH vông góc AB (H thuộc AB) kẽ MH vuông góc AC (K thuộc AC)
chứng minh :tam giác BHM=CKM?
Cho tam giác DEF có DE = 5cm; DF = 12cm ; EF = 13cm.
a) Chứng minh tam giác DEF vuông.
b) Tia phân giác của góc E cắt DF tại M. Từ M kẻ MH vuông góc với EF. Chứng minh
DEM = HEM
c) Chứng minh tam giác MDH cân.
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, kẻ CE vuông góc với AB. Gọi K là giao điểm của BD và CE.
a) Chứng minh AD = AE.
b) Chứng minh tam giác KBC cân.
c) Chứng minh AK là tia phân giác của góc A.
Tam giác ABC có M là trung điểm của BC, AM là tia phân giác của góc A. Kẻ MH vuông góc với AB, MK vuông góc với AC. Chứng minh rằng :
a) \(MH=MK\)
b) \(\widehat{B}=\widehat{C}\)
Cho tam giác MNP vuông tại M có MP = 6 cm, MN = 8 cm. Kẻ PK là phân giác góc MPN(K thuộc MN). Trên cạnh PN lấy điểm E sao cho PE = PM .
a) Tính độ dài PN b)Chứng minh và
c)Gọi D là giao điểm của tia EK và tia PM. Chứng minh KD = KN
d)Chứng minh tam giác PDN cân
e) Tìm điều kiện của tam giác MNP để tam giác PDN đều
cho tam giác ABC cân tại A (A<90 độ) . Kẻ BD vuông góc với AC tại D và CE vuông góc với AB tại E
a) chứng minh tam giác ABD = tam giác ACE
b) trên tia đối của tia BD lấy điểm K sao cho BD = DK . Chứng minh tam giác BCK là tam giác cân
c) chứng minh ED song song với BC từ đó suy ra góc EDB = góc DKC