\(AM=\frac{3\sqrt{3}}{2}\) ; \(MC=\frac{3}{2}\)
Đặt \(\overrightarrow{u}=\overrightarrow{AM}+\overrightarrow{GC}=\overrightarrow{AM}+\overrightarrow{GM}+\overrightarrow{MC}=\overrightarrow{AM}+\frac{1}{3}\overrightarrow{AM}+\overrightarrow{MC}\)
\(=\frac{4}{3}\overrightarrow{AM}+\overrightarrow{MC}\)
\(\Rightarrow\left|\overrightarrow{u}\right|^2=K^2=\left(\frac{4}{3}\overrightarrow{AM}+\overrightarrow{MC}\right)^2=\frac{16}{9}AM^2+MC^2+\frac{8}{3}\overrightarrow{AM}.\overrightarrow{MC}\)
\(\Rightarrow K^2=\frac{16}{9}AM^2+MC^2=\frac{57}{4}\)