cho tam giác ABC vuông tại A đường cao AH. cmr \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
cho tứ giác ABCD nội tiếp đường tròn tâm O. biết phân giác trong của \(\widehat{BAD}\) và \(\widehat{ABC}\) cắt nhau tại E trên cạnh CD.
1. CM: AD+BC=CD
2. cho \(\dfrac{CD}{CB}=k\) (k>1). tính tỉ số diện tích ΔADE và ΔBCE
Tam giác ABC, \(\widehat{A}=60\) độ và phân giác AD. CMR: \(\dfrac{1}{AB}+\dfrac{1}{AC}=\dfrac{\sqrt{3}}{AD}\)
Cho tam giác ABC cân tại A có các đường cao AH và BK. Chứng minh rằng : \(\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}\)
cho tam giác ABC vuông tại A biết \(\dfrac{AB}{AC}=\dfrac{5}{7}\). đường cao AH=15cm. tính HB, HC
1. Cho ∆ABC biết BC = 7.5cm, AC = 4.5cm, AB = 6cm.
a) ∆ABC là tam giác gì? Tính đường cao AH của ∆ABC.
b) Tính độ dài các cạnh BH, HC.
2. Cho ∆ABC vuông tại A, AB = 12cm, AC = 16cm, phân giác AD, đường cao AH. Tính HD, HB, HC.
Cho tam giác ABC vuông tại A có BD là tia phân giác của góc B ( D thuộc AC).Chứng minh rằng :\(\dfrac{B}{2}\) =\(\dfrac{AC}{BC+AB}\)
Cho tam giác ABC vuông tại A. AH là đường cao biết \(\dfrac{HB}{HC}=\dfrac{1}{2}\) Chứng minh \(\left(\dfrac{AB}{AH}\right)^2=\dfrac{3}{2}\)
Cho tam giác ABC cân tại A. BD,CE là đường cao. AB=c, BC=a, AC=b. Chứng minh rằng: \(DE=\dfrac{a\left(2b^2-a^2\right)}{2b^2}\)