a) Ta có:
\(tanA=\dfrac{BC}{AC}\Rightarrow tan30^o=\dfrac{BC}{3}\)
\(\Rightarrow BC=3\cdot tan30^o=\sqrt{3}\left(cm\right)\)
b) Áp dụng Py-ta-go ta có:
\(AB^2=AC^2+BC^2\)
\(\Rightarrow AB=\sqrt{AC^2+BC^2}=\sqrt{9+3}=2\sqrt{3}\left(cm\right)\)
c) Do BD là phân giác của góc B nên: \(\widehat{CBD}=\dfrac{\widehat{B}}{2}=\dfrac{90^o-30^o}{2}=30^o\)
Xét tam giác CBD vuông tại C ta có:
\(cosCBD=\dfrac{BC}{BD}\Rightarrow cos30^o=\dfrac{\sqrt{3}}{BD}\)
\(\Rightarrow BD=\dfrac{\sqrt{3}}{cos30^o}=2\left(cm\right)\)