Cho tam giác ABC, lấy D, E lần lượt là trung điểm của AB, AC.
a) Cho biết BC = 6 cm. Tính độ dài đoạn thẳng DE.
b) Gọi G là trung điểm của BC. Chứng minh tứ giác DECG là hình bình hành.
c) Qua C kẻ đường thẳng song song với AB, đường thẳng này cắt đường thẳng DE tại K. Lấy O là trung điểm của DC. Chứng minh 3 điểm K, O, B thẳng hàng.
d) Tìm điều kiện của tam giác ABC để tứ giác DGCK là hình thang cân.
ΔABC vuông ở A, đường cao AH. Gọi D và E theo thứ tự là chân đường vuông góc kẻ từ H đến AB, AC.
a/. Chứng minh rằng: AH=DE
b/. Gọi I và K theo thứ tự là trung điểm của HB và HC. Chứng minh rằng: DIKE là hình thang vuông
cho tam giác ABC vuông tại A có đường cao AH. Từ H kẻ HN vuông góc AC(n thuộc AC) kẻ HM vuông góc AB( M thuộc AB). a) Chứng minh tứ giác AMHN là hình chứ nhật. Gọi D là điểm đối xứng với H qua M, E đối xứng H qua N. Chứng minh tứ giác AMNE là hình bình hành. b)Chứng minh A là trung điểm của DE. c)Chứng minh BC^2=BD^2 + CE^2 + 2BH.HC
1. Cho hình bình hành ABCD có AB= 2AD. Gọi M, N theo tứ tự là trung điểm của các cạnh AB, CD. Gọi P và Q lần lượt là giao điểm của BN với CM và của AN với DM
a. Tứ giác AMND là hình gì? Vì sao?
b. Chứng minh: tứ giác MPNQ là hình chữ nhật
c. Tìm điều kiện của tứ giác ABCD để MPNQ là hình vuông
d. Chứng minh: bốn đường thẳng AC, BD, MN, QP đồng qui
2. Cho hình bình hành ABCD. Kẻ AN, CM vuông góc với BD, N và M thuộc BD
a. Chứng minh DN = BM
b. Chứng minh Tứ giác ANCM là hình bình hành
c. Gọi K là điểm đối xứng với A qua N. Tứ giác DKCB là hình gì? Vì sao?
d. Tia AM cắt tia KC tại P. Chứng minh các đường thẳng AC, PN, KM đồng qui
1. Cho hình bình hành ABCD có AB= 2AD. Gọi M, N theo tứ tự là trung điểm của các cạnh AB, CD. Gọi P và Q lần lượt là giao điểm của BN với CM và của AN với DM
a. Tứ giác AMND là hình gì? Vì sao?
b. Chứng minh: tứ giác MPNQ là hình chữ nhật
c. Tìm điều kiện của tứ giác ABCD để MPNQ là hình vuông
d. Chứng minh: bốn đường thẳng AC, BD, MN, QP đồng qui
2. Cho hình bình hành ABCD. Kẻ AN, CM vuông góc với BD, N và M thuộc BD
a. Chứng minh DN = BM
b. Chứng minh Tứ giác ANCM là hình bình hành
c. Gọi K là điểm đối xứng với A qua N. Tứ giác DKCB là hình gì? Vì sao?
d. Tia AM cắt tia KC tại P. Chứng minh các đường thẳng AC, PN, KM đồng qui
cho tam giać ABC vuông góc tại A biết AB=6cm,AC=8cm có đường trung tuyến AM qua M lần lượt kẻ các đường thẳng vuông góc với AB và AC taị E và F a)tính BM,AM b) chứng minh rằng tứ giác AEMF là hình chữ nhật c) D là điểm đối xứng của M qua F chứng minh tứ giác MCDA là hình thoi
Cho tam giác ABC vuông tại A. Gọi D là trung điểm cạnh BC. Kẻ ED vuông góc AC tại E, DF vuông góc AB tại F.
a) Chứng minh: AD = EF
b) Lấy G đối xứng với D qua F. Chứng minh: tứ giác ADBG là hình thoi.
c) Gọi K là giao điểm của AG và ED. Chứng minh: AD, BK, CG đồng quy.
d) Tìm điều kiện của tam giác ABC để hình thoi ADBG là hình vuông.
Cho hình bình hành ABCD các đường chéo cắt nhau tại O. Gọi 2 E, F theo thứ tự là trung điểm OB, OD
a) Tứ giác AECF là hình gì? Vì sao?
b) Gọi H là giao của AF và DC, K là giao của CE và AB. Chứng minh AH= Ck
c) Qua O kẻ 1 đường thằng // với CK cắt DC tại I. Chứng minh DI= 2CI
Các bạn ơi giúp mình với! Mai mình phải nộp bài rồi....
Cho hình chữ nhật ABCD. Kẻ AN và CM cùng vuông góc với BD.
a) Chứng minh: DN = BM.
b) Chứng minh: tứ giác ANCM là hình bình hành.
c) Gọi K là điểm đối xứng với điểm A qua điểm N, tứ giác DKCB là hình gì? Tại sao?
d) Tia AM cắt tia KC tại P. Chứng minh: các đường thẳng PN, AC, KM đồng quy.